Home
Class 12
MATHS
Let f(x)=2x^(3)-3(2+p)x^(2)+12px+ln(16),...

Let `f(x)=2x^(3)-3(2+p)x^(2)+12px+ln(16)`, `f(x)` has exactly one local maxima and one local minima, then the number of integral values of `p` is (are)

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=2x^(3)-3(2+p)x^(2)+12px+ln(16-p^(2)) If f(x) has exactly one local maxima and one local minima, then the number of integral values of p is

Let f(x)=2x^(3)-3(2+p)x^(2)+12px+ln(16-p^(2)) . If f(x) has exactly one local maxima and one local minima, then the number of integral values of p is

Let f(x)=2x^(3)-3(2+p)x^(2)+12px If f(x) has exactly one local maxima and one local minima, then the number of integral values of p is ....

Let f(x)= 2x^(3)-3(2+P)x^(2)+12Px+ln(16-P^(2)) .If f(x) has exactly one local minimum,one local maximum.Then the number of integral values of P is

Let S be the set of real values of parameter lamda for which the equation f(x) = 2x^(3)-3(2+lamda)x^(2)+12lamda x has exactly one local maximum and exactly one local minimum. Then S is a subset of

Let f (x) = x^(2) , x in [-1 , 2) Then show that f(x) has exactly one point of local minima but global maximum is not defined.

f(x) = -(3/4)x^2-8x^3-42/5x^2+105 . Calculate local maxima and local minima.

Let f(x)=2x^(3)-9x^(2)+12x+6. Discuss the global maxima and minima of f(x) in [0,2].

Find all points of local maxima and local minima of the function f given by f(x)=x^(3)-3x+3