Home
Class 13
MATHS
A=[[e^(t),e^(-t)cos t,e^(-t)],[e^(t),-e^...

A=[[e^(t),e^(-t)cos t,e^(-t)],[e^(t),-e^(-t)sin t-e^(-t)sin t-e^(-t)sin t+e^(-t)sin t],[e^(t),2e^(-t)sin t,-e^(-t)cos t]]" then "A" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

A = [{:(e^(t), e^(-t)"cos"t, e^(-t)"sin"t),(e^(t)-e^(-t), "cos"t-e^(-t)"sin"t, -e^(-t)"sin"t + e^(-t)"cos"t),(e^(t), 2e^(-t)"sin"t, -2e^(-t)"cos"t):}]"then A is"

Matrix [[e^t,e^(-t)(sint-2cost),e^(-t)(-2sint-cost)],[e^t,-e^(-t)(2sint+cost),e^(-t)(sint-2cost)],[e^t,e^(-t)cost,e^(-t)sint]] is invertible. (1) only id t=pi/2 (2) only y=pi (3) t in R (4) t !in R

int e^(t)(cost-sin t)dt

Matrix =[[e^t,e^-t(sint-2cost),e^-t(-2sint-cost)],[e^t,-e^-t(2sint+cost),e^-t(sint-2cost)],[e^t,e^tcost,e^-tsint]] is invertible. (a) only if t=(pi)/(2) (b) only t=pi (c) tepsilonR (d) t!inR

Matrix =[[e^t,e^-t(sint-2cost),e^-t(-2sint-cost)],[e^t,-e^-t(2sint+cost),e^-t(sint-2cost)],[e^t,e^tcost,e^-tsint]] is invertible. (a) only if t=(pi)/(2) (b) only t=pi (c) tepsilonR (d) t!inR

Matrix =[[e^t,e^-t(sint-2cost),e^-t(-2sint-cost)],[e^t,-e^-t(2sint+cost),e^-t(sint-2cost)],[e^t,e^tcost,e^-tsint]] is invertible. (a) only if t=(pi)/(2) (b) only y=pi (c) tepsilonR (d) t!inR

x=e^t (sin t + cos t ),y=e^t(sin t -cos t)

Find dy/dx x=e^t (sin t + cos t ),y=e^t(sin t -cos t)

int(2e^(t))/(e^(3t)-6e^(2t)+11e^(t)-6)dt