Home
Class 12
MATHS
[" 0.2.Show that: "],[" (i) "sin^(-1)(2x...

[" 0.2.Show that: "],[" (i) "sin^(-1)(2x sqrt(1-x^(2)))=2sin^(-1)x,-(1)/(sqrt(2))<=x<=(1)/(sqrt(2))],[" (ii) "sin^(-1)(2x sqrt(1-x^(2)))=2cos^(-1)x,(1)/(sqrt(2))<=x<=1]

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that (i) sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,1/(sqrt(2))lexle1

Show that (i) sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,1/(sqrt(2))lexle1

Show that, sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/sqrt2lexle1/sqrt2

Show that (i) sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x ,-1/(sqrt(2))lt=xlt=1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^2))=2cos^(-1)x ,1/(sqrt(2))lt=xlt=1

Show that(i) sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x ,-1/(sqrt(2))lt=xlt=1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^2))=2cos^(-1)x ,1/(sqrt(2))lt=xlt=1

sin^(-1)(2x sqrt(1-x^(2))),x in[(1)/(sqrt(2)),1] is equal to

Prove that : sin^(-1) (2x sqrt(1-x^(2)))= 2 sin^(-1) x, - 1/(sqrt(2)) le x le 1/(sqrt(2))

Prove that : sin^(-1) (2x sqrt(1-x^(2)) ) = 2 sin^(-1) x , -1/(sqrt(2))le x le 1/(sqrt(2)