Home
Class 12
MATHS
Suppose four distinct positive numbers a...

Suppose four distinct positive numbers `a_1,a_2,a_3,a_4` are in G.P. Let `b_1=a_1,b_2=b_1+a_2,b_3=b_2+a_3` and `b_4=b_3+a_4`.
Statement -1 : The numbers `b_1,b_2,b_4` are neither in A.P. nor in G.P. and
Statement -2 : The numbers `b_1,b_2,b_3,b_4` are in H.P.

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose four distinct positive numbers a_1, a_2, a_3, a_4, are in G.P. Let b_1=a_1,b_2=b_1+a_2.b_3=b_2+a_3 and b_4=b_3+a_1.

Suppose four distinct positive numbers a_(1),a_(2),a_(3),a_(4) are in G.P. Let b_(1)=a_(1),b_(2)=b_(1)+a_(2),b_(3)=b_(2)+a_(3)andb_(4)=b_(3)+a_(4) . Statement -1 : The numbers b_(1),b_(2),b_(3),b_(4) are neither in A.P. nor in G.P. Statement -2: The numbers b_(1),b_(2),b_(3),b_(4) are in H.P.

Suppose four distinct positive numbers a_(1),a_(2),a_(3),a_(4) are in G.P. Let b_(1)=a_(1), b_(2)=b_(1)+a_(2),b_(3)=b_(2)+a_(3)andb_(4)=b_(3)+a_(4) . Statement -1 : The numbers b_(1),b_(2),b_(3),b_(4) are neither in A.P. nor in G.P. Statement -2: The numbers b_(1),b_(2),b_(3),b_(4) are in H.P.

Suppose four distinct positive numbers a_(1),a_(2),a_(3),a_(4) are in G.P. Let b_(1)=a_(1)+,a_(b)=b_(1)+a_(2),b_(3)=b_(2)+a_(3)andb_(4)=b_(3)+a_(4) . Statement -1 : The numbers b_(1),b_(2),b_(3),b_(4) are neither in A.P. nor in G.P. Statement -2: The numbers b_(1),b_(2),b_(3),b_(4) are in H.P.

Suppose four distinct positive numbers a_(1),a_(2),a_(3),a_(4) are in G.P. Let b_(1)=a_(1)+,a_(b)=b_(1)+a_(2),b_(3)=b_(2)+a_(3)andb_(4)=b_(3)+a_(4) . Statement -1 : The numbers b_(1),b_(2),b_(3),b_(4) are neither in A.P. nor in G.P. Statement -2: The numbers b_(1),b_(2),b_(3),b_(4) are in H.P.

Suppose four distinct positive numbers a_(1),a_(2),a_(3),a_(4) are in G.P. Let b_(1)=a_(1)+,a_(b)=b_(1)+a_(2),b_(3)=b_(2)+a_(3)andb_(4)=b_(3)+a_(4) . Statement -1 : The numbers b_(1),b_(2),b_(3),b_(4) are neither in A.P. nor in G.P. Statement -2: The numbers b_(1),b_(2),b_(3),b_(4) are in H.P.

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to

Let a_1, a_2 , a_3 and a_4 be in AP. If a_1 + a_4 =10 and a_2. a_3 =24 , then the least term of the AP, is