Home
Class 12
MATHS
Let omega = - (1)/(2) + i (sqrt3)/(2), t...

Let `omega = - (1)/(2) + i (sqrt3)/(2)`, then the value of the determinant `|(1,1,1),(1,-1- omega^(2),omega^(2)),(1,omega^(2),omega^(4))|`, is

A

`3 omega`

B

`3 omega (omega - 1)`

C

`3 omega^(2)`

D

`3 omega (1-omega)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE LEVEL 2|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE LEVEL 3|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE|20 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|17 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos

Similar Questions

Explore conceptually related problems

Let omega=-(1)/(2)+i(sqrt(3))/(2). Then the value of the determinant det[[1,1,11,1,omega^(2)1,omega^(2),omega^(4)]]3 omega(omega-1)(C)3 omega^(2)(D)3 omega(1-omega)

Let omega=-(1)/(2)+i(sqrt(3))/(2), then value of the determinant [[1,1,11,-1,-omega^(2)omega^(2),omega^(2),omega]] is (a) 3 omega(b)3 omega(omega-1)3 omega^(2)(d)3 omega(1-omega)

(1-omega+omega^(2))(1+omega-omega^(2))=4

The inverse of the matrix A=|(1,1,1),(1,omega,omega^2),(1,omega^2,omega)|, where omega=e(2pii)/3, is

The value of det[[1,1,11,omega,omega^(2)1,omega^(2),omega]]

det [[1, omega, omega^(2) omega, omega^(2), 1omega^(2), 1, omega]]

If omega is cube root of unit, then find the value of determinant |(1,omega^3,omega^2), (omega^3,1,omega), (omega^2,omega,1)|.

MCGROW HILL PUBLICATION-COMPLEX NUMBERS -EXERCISE LEVEL 1
  1. Let z1 and z2 be nth roots of unity which subtend a right angle at the...

    Text Solution

    |

  2. The complex number z1,z2 and z3 satisfying (z1 - z3)/(z2 - z3) = ( 1 -...

    Text Solution

    |

  3. Let omega = - (1)/(2) + i (sqrt3)/(2), then the value of the determina...

    Text Solution

    |

  4. The inequality |z-i| lt |z + i| represents the region

    Text Solution

    |

  5. Show that if iz^3+z^2-z+i=0, then |z|=1

    Text Solution

    |

  6. If x + iy = (1)/(1-cos theta + 2 i sin theta), theta ne 2n pi, n in I,...

    Text Solution

    |

  7. The equation z^3=bar z has

    Text Solution

    |

  8. If z = 5 + t + isqrt(25 - t^(2)), (-5 le t le 5), then locus of z is a...

    Text Solution

    |

  9. If omega is complex cube root of that 1/(a+omega)+1/(b+omega)+1/(c+ome...

    Text Solution

    |

  10. if |z-iRe(z)|=|z-Im(z)| where i=sqrt(-1) then z lies on

    Text Solution

    |

  11. If omega is a complex cube root of unity, then value of expression cos...

    Text Solution

    |

  12. If roots of the equation z^2+ az + b = 0 are purely imaginary then

    Text Solution

    |

  13. The system of equations |z+1-i|=sqrt2 and |z| = 3 has

    Text Solution

    |

  14. If 8iotaz^3+12z^2-18z+27iota=0 then: a. |z|=3/2 b. |z|=2/3 c. |z|=...

    Text Solution

    |

  15. If a complex number z lies in the interior or on the boundary of a cir...

    Text Solution

    |

  16. If x+iy=3/(2+costheta +i sin theta), then show that x^2+y^2=4x-3

    Text Solution

    |

  17. Suppose z(1), z(2), z(3) represent the vertices A, B and C respectivel...

    Text Solution

    |

  18. Suppose that three points z(1), z(2), z(3) are connected by the relati...

    Text Solution

    |

  19. If the number (z-1)/(z+1) is purely imaginary, then

    Text Solution

    |

  20. If z s a complex number such that -pi/2 leq arg z leq pi/2, then which...

    Text Solution

    |