Home
Class 12
MATHS
Let z = ((2)/(i + sqrt(3)))^(200)+((2)/(...

Let `z = ((2)/(i + sqrt(3)))^(200)+((2)/(i-sqrt(3)))^(200),"then" |z + (1.7)^(2)|` = ________________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( z = \left( \frac{2}{i + \sqrt{3}} \right)^{200} + \left( \frac{2}{i - \sqrt{3}} \right)^{200} \) and then find \( |z + (1.7)^2| \). ### Step-by-Step Solution: 1. **Rewrite the fractions**: We start with the expression for \( z \): \[ z = \left( \frac{2}{i + \sqrt{3}} \right)^{200} + \left( \frac{2}{i - \sqrt{3}} \right)^{200} \] 2. **Multiply numerator and denominator by \( i \)**: To simplify the denominators, we multiply the numerator and denominator by \( i \): \[ z = \left( \frac{2i}{i^2 + \sqrt{3}i} \right)^{200} + \left( \frac{2i}{i^2 - \sqrt{3}i} \right)^{200} \] Here, \( i^2 = -1 \), so we have: \[ z = \left( \frac{2i}{-1 + \sqrt{3}i} \right)^{200} + \left( \frac{2i}{-1 - \sqrt{3}i} \right)^{200} \] 3. **Simplify the denominators**: The terms simplify to: \[ z = \left( \frac{2i}{\sqrt{3}i - 1} \right)^{200} + \left( \frac{2i}{-\sqrt{3}i - 1} \right)^{200} \] 4. **Express in terms of \( \omega \)**: Let \( \omega = -\frac{1}{2} + \frac{\sqrt{3}}{2}i \) (which is a cube root of unity). Then: \[ z = \left( \frac{2i}{\omega} \right)^{200} + \left( \frac{2i}{\omega^2} \right)^{200} \] 5. **Calculate powers of \( i \)**: Since \( i^{200} = (i^4)^{50} = 1^{50} = 1 \), we can simplify: \[ z = \frac{2^{200} i^{200}}{\omega^{200}} + \frac{2^{200} i^{200}}{\omega^{400}} = \frac{2^{200}}{\omega^{200}} + \frac{2^{200}}{\omega^{400}} \] 6. **Use properties of \( \omega \)**: We know \( \omega^3 = 1 \), hence \( \omega^{400} = \omega^{1} \) and \( \omega^{200} = \omega^{2} \): \[ z = 2^{200} (\omega^{-2} + \omega^{-1}) = 2^{200} (\omega + \omega^2) \] 7. **Sum of cube roots of unity**: Since \( \omega + \omega^2 = -1 \): \[ z = 2^{200} \cdot (-1) = -2^{200} \] 8. **Calculate \( |z + (1.7)^2| \)**: Now we need to find \( |z + (1.7)^2| \): \[ (1.7)^2 = 2.89 \] Thus: \[ |z + 2.89| = |-2^{200} + 2.89| \] 9. **Final calculation**: Since \( 2^{200} \) is a very large number, we can approximate: \[ | -2^{200} + 2.89 | \approx 2^{200} \] ### Conclusion: The final answer is: \[ |z + (1.7)^2| = 2^{200} - 2.89 \approx 2^{200} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. AIEEE/JEE MAIN PAPERS|58 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise EXERCISE LEVEL 21|1 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|17 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos

Similar Questions

Explore conceptually related problems

If z(2-2sqrt(3i))^(2)=i(sqrt(3)+i)^(4), then arg(z)=

If z = ((1)/(sqrt(3)) + (1)/(2)i)^(7) + ((1)/(sqrt(3))-(1)/(2)i)^(7) , then

Prove that ((i-sqrt(3))/(-i+sqrt(3)))^(200)+((i-sqrt(3))/(i+sqrt(3)))^(200)=-1

Let z = (1)/(2) (sqrt(3) + i),"then" |(z^(101)+i^(103))^(105)| = ________.

If z(2-i2sqrt(3))^(2)=i(sqrt(3)+i)^(4), then amplitude of z is

If z=((sqrt(3))/(2)+(i)/(2))^(5)+((sqrt(3))/(2)-(i)/(2))^(5), then

What is the value of ((i+sqrt3)/(-i+sqrt3))^(200)+((i-sqrt3)/(i+sqrt3))^(200)+1 ?

MCGROW HILL PUBLICATION-COMPLEX NUMBERS -EXERCISE NUMERICAL ANSWER TYPE QUESTIONS
  1. Suppose a in R and z in C. "If" |z| = 2 and (z-alpha)/(z+alpha) is pur...

    Text Solution

    |

  2. If alpha an d beta are roots of the equation x^(2)-2x+2=0, then the le...

    Text Solution

    |

  3. Let S = {(2alpha+3i)/(2alpha-3i):alpha in R}. All the points of S lie ...

    Text Solution

    |

  4. Let omega ne 1 be cube root of unity. Suppose (1 + omega)^(2023) = A +...

    Text Solution

    |

  5. If (7+i)(z + bar(z))-(4+i)(z-bar(z)) + 116i = 0 then z bar(z) is equal...

    Text Solution

    |

  6. Let C(1) be the curve represented by (2z + i)/(z-2) is purely imaginar...

    Text Solution

    |

  7. Let a = 3 + 4i, z(1) and z(2) be two complex numbers such that |z(1)| ...

    Text Solution

    |

  8. Let alpha be the real and beta, gamma be the complex roots of x^(3) + ...

    Text Solution

    |

  9. Let z = ((2)/(i + sqrt(3)))^(200)+((2)/(i-sqrt(3)))^(200),"then" |z + ...

    Text Solution

    |

  10. Let z be a non-zero complex number such that area of the triangle with...

    Text Solution

    |

  11. Suppose x, y in R. If x^(2) + y + 4i is conjugate of -3 + x^(2) yi, th...

    Text Solution

    |

  12. All the roots of the equation x^(11) - x^(6) - x^(5) + 1 = 0 lie on a ...

    Text Solution

    |

  13. If 13 e^(i tan^(-1)(5//12))= a+ib, then |a| + |b| is equal to .

    Text Solution

    |

  14. Suppose, a, b, c ge 0, c ne 1, a^(2) + b^(2) + c^(2) = c. If |(a+ib)/(...

    Text Solution

    |

  15. Let z(1), z(2), z(3) be the roots of iz^(3) + 5z^(2) - z + 5i = 0, the...

    Text Solution

    |

  16. Let S = {z in C : z^(2) = 4 (i bar(z))^(2)},"then" sum(z in S)|z+(1)/(...

    Text Solution

    |

  17. Let z = (1)/(2) (sqrt(3) + i),"then" |(z^(101)+i^(103))^(105)|= .

    Text Solution

    |

  18. If alpha = cos((8pi)/11)+i sin ((8pi)/11) then Re(alpha + alpha^2+alph...

    Text Solution

    |

  19. Eccentricity of conic |z - 5i| + |z + 5i| = 25 is .

    Text Solution

    |

  20. If alpha is a non-real root of x^6=1 then (alpha^5+alpha^3+alpha+1)/(a...

    Text Solution

    |