Home
Class 11
MATHS
[" 10.Prove that "sin^(2)theta=((x+y)^(2...

[" 10.Prove that "sin^(2)theta=((x+y)^(2))/(4xy)" is possible for real values of "x" and "y" only "],[" when "x=y" and "x!=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin^(2)theta=((x+y)^(2))/(4)xy is possible for real values of x and y only when x=y and x!=0.

Show that sin^(2)theta=(x^(2)+y^(2))/(2xy) is possible for real value of x and y only when x=y!=0

Prove that sin^2theta=(x+y)^2/(4xy) is possible for real values of x and y only when x = y , y!=0 and x!=0 .

Is the equation sec^(2)theta=(4xy)/((x+y)^(2)) possible for real values of x and y ?

sin^(2) theta = ((x+y)^(2))/(4xy) is true if and only if

Show that sec^2theta=(4xy)/(x+y)^2 is possible only if x = y

The equation sin^(2)theta=(x^(2)+y^(2))/(2xy),x,y!=0 is possible if

sin theta = ( x + Y)/( 2 sqrt(xy)) is possible

The equation Sin^(2)theta=(x^(2)+y^(2))/(2xy),x,y!=0 is possible if

The equation sin^2theta=(x^2+y^2)/(2x y),x , y!=0 is possible if