Home
Class 12
MATHS
Let A = ((a,b),(c,d)) be such that A^(3)...

Let A = `((a,b),(c,d))` be such that `A^(3)=O` but `Ane O` then

A

`A^(2)=O`

B

`A^(2)=A`

C

`A^(2)=I-A`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the properties of the matrix \( A \) given that \( A^3 = O \) (the null matrix) and \( A \neq O \). ### Step-by-Step Solution: 1. **Given Information**: We know that \( A^3 = O \) and \( A \neq O \). 2. **Post-Multiplying by \( A^{-1} \)**: Since \( A \) is not the null matrix, we can consider the possibility of finding \( A^{-1} \) (the inverse of \( A \)). However, we need to be careful because \( A \) being nilpotent (since \( A^3 = O \)) implies that it cannot have an inverse. Thus, we cannot directly multiply by \( A^{-1} \). 3. **Analyzing \( A^3 = O \)**: Since \( A^3 = O \), we can express this as: \[ A \cdot A \cdot A = O \] This indicates that multiplying \( A \) by itself three times results in the null matrix. 4. **Exploring the Implications**: From the property of nilpotent matrices, we can conclude that: - \( A^2 \) cannot be the identity matrix \( I \) because if \( A^2 = I \), then \( A^3 \) would not be \( O \). - Therefore, \( A^2 \) must also be a nilpotent matrix. 5. **Finding \( A^2 \)**: Since \( A^3 = O \) implies that \( A^2 \) must also be such that: \[ A^2 \cdot A = O \] This means \( A^2 \) must also be a non-invertible matrix (since it leads to the null matrix when multiplied by \( A \)). 6. **Conclusion**: The only conclusion we can draw is that: \[ A^2 = O \] This is consistent with the properties of nilpotent matrices. ### Final Result: Thus, we conclude that \( A^2 = O \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES ( LEVEL 2 ( Straight Objective Type Questions ) )|11 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES ( LEVEL 2 (Numercial Answer Type Questions))|18 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B -Architecture Entrance Examination Papers|22 Videos
  • MATHEMATICAL REASONING

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B. ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • PARABOLA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTRE ENTRANCE EXAMINATION PAPERS|9 Videos

Similar Questions

Explore conceptually related problems

If A=[(a,b),(c,d)] , where a, b, c and d are real numbers, then prove that A^(2)-(a+d)A+(ad-bc) I=O . Hence or therwise, prove that if A^(3)=O then A^(2)=O

A B C D is a trapezium such that B C || A D and A B=4c m . If the diagonals A C and B D intersect at O such that (A O)/(O C)=(D O)/(O B)=1/2 , then B C= 7c m (b) 8c m (c) 9c m (d) 6c m

A point O is taken inside an equilateral four sided figure A B C D such that its distances from the angular points D and B are equal. Show that A O and O C are in one and the same straight line. GIVEN : A point O inside an equilateral quadrilateral four sided figure A B C D such that B O=O Ddot TO PROVE : A O and O C are in one and the same straight line.

In Fig. 9.25, diagonals AC and BD of quadrilateral ABCD intersect at O such that O B" "=" "O D . If A B" "=" "C D , then show that: (i) a r" "(D O C)" "=" "a r" "(A O B) (ii) a r" "(D C B)" "=" "a r" "(A C B) (iii) D A" "||" "C

If ABC and DEF are similar triangles such that /_A=47o and /_E=83o, then /_C=50o(b)60o(c)70o(d)80o

Line segments A B a n d C D intersect at O such that A C D Bdot If /_C A B=45^0a n d /_C D B=55^0, then /_B O D= 100^0 (b) 80^0 (c) 90^0 (d) 135^0

In a quadrilateral A B C D , bisectors of angles A\ a n d\ B intersect at O such that /_A O B=75^0, then write the value of /_C+\ /_D

Diagonals A C a n d B D of a quadrilateral A B C D intersect at O in such a way that a r ( A O D)=a r ( B O C)dot Prove that A B C D is a trapezium.

MCGROW HILL PUBLICATION-MATRICES-SOLVED EXAMPLES ( LEVEL 1 ( Single Correct Answer Type Questions ) )
  1. If A=[(a,b),(b,a0] and A^2=[(alpha, beta0,(beta, alpha)] then (A) alph...

    Text Solution

    |

  2. Let omega!=1 be cube root of unity and S be the set of all non-singula...

    Text Solution

    |

  3. If a matrix A is both symmetric and skew-symmetric, then A is a dia...

    Text Solution

    |

  4. Let A = [(2,-1),(3,4)], B = [(5,2),(7,4)] , C = [(2,5),(3,8)] . Let ...

    Text Solution

    |

  5. If A^2 = A, then (I + A)^(4) is equal to

    Text Solution

    |

  6. The matrix A = [(0,0,-7),(0,-7,0),(-7,0,0)] is a

    Text Solution

    |

  7. If A=[3 5],B=[7 3], then find a non-zero matrix C such that AC=BC.

    Text Solution

    |

  8. Find the values of x, y, z if the matrix A=[0 2y z x y-z x-y z] sat...

    Text Solution

    |

  9. Suppose A is square matrix such that A^(3) =I then (A+I)^(3) +(A-I)^...

    Text Solution

    |

  10. The number of 3xx3 matrices A whose entries are either 0 or 1 and for ...

    Text Solution

    |

  11. The number of 3 3 non-singular matrices, with four entries as 1 and ...

    Text Solution

    |

  12. Consider the system of linear equations: x(1) + 2x(2) + x(3) = 3 2...

    Text Solution

    |

  13. Let a,b, and c be three real numbers satistying [a,b,c][(1,9,7),(8,2,7...

    Text Solution

    |

  14. Let P and Q be 3xx3 matrices with P!=Q . If P^3=""Q^3a n d""P^2Q""=""Q...

    Text Solution

    |

  15. Let A=((1,0,0),(2,1,0),(3,2,1)). If u(1) and u(2) are column matrices ...

    Text Solution

    |

  16. If P is a 3xx3 matrix such that P^T = 2P+I, where P^T is the transpose...

    Text Solution

    |

  17. A=[[4, 3],[ 2 ,5]] find x and y such thatA^2-xA+yI=0

    Text Solution

    |

  18. The system of equations ((3,-2,1),(5,-8,9),(2,1,a)) ((x),(y),(z))=((...

    Text Solution

    |

  19. Suppose l+A is non-singular. Let B=(I+A)^(-1) and C=I-A , then ....(wh...

    Text Solution

    |

  20. Let A = ((a,b),(c,d)) be such that A^(3)=O but Ane O then

    Text Solution

    |