Home
Class 12
MATHS
If a,b,c ne0 and a+b+c=0 then the matrix...

If a,b,c `ne`0 and a+b+c=0 then the matrix
`[(1+(1)/(a),1,1),(1,1+(1)/(b),1),(1,1,1+(1)/(c))]` is

A

singular

B

non -singular

C

skew -symmetric

D

orthogonal

Text Solution

AI Generated Solution

The correct Answer is:
To determine the nature of the given matrix \[ A = \begin{pmatrix} 1 + \frac{1}{a} & 1 & 1 \\ 1 & 1 + \frac{1}{b} & 1 \\ 1 & 1 & 1 + \frac{1}{c} \end{pmatrix} \] we need to analyze its properties based on the conditions provided: \( a + b + c = 0 \) and \( a, b, c \neq 0 \). ### Step 1: Calculate the Determinant of the Matrix To check if the matrix is singular or non-singular, we need to calculate its determinant. A matrix is singular if its determinant is zero. Using the determinant formula for a \(3 \times 3\) matrix, we have: \[ \text{det}(A) = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31}) \] Substituting the values from matrix \(A\): \[ \text{det}(A) = \left(1 + \frac{1}{a}\right) \left( \left(1 + \frac{1}{b}\right)(1 + \frac{1}{c}) - 1 \cdot 1 \right) - 1 \left( 1 \cdot (1 + \frac{1}{c}) - 1 \cdot 1 \right) + 1 \left( 1 \cdot 1 - 1 \cdot (1 + \frac{1}{b}) \right) \] ### Step 2: Simplify the Determinant Now, we simplify the expression: 1. Calculate \( \left(1 + \frac{1}{b}\right)(1 + \frac{1}{c}) - 1 \): \[ = 1 + \frac{1}{b} + \frac{1}{c} + \frac{1}{bc} - 1 = \frac{1}{b} + \frac{1}{c} + \frac{1}{bc} \] 2. Substitute this back into the determinant: \[ \text{det}(A) = \left(1 + \frac{1}{a}\right) \left( \frac{1}{b} + \frac{1}{c} + \frac{1}{bc} \right) - \left( \frac{1}{c} \right) + \left( -\frac{1}{b} \right) \] ### Step 3: Use the Condition \(a + b + c = 0\) From the condition \(a + b + c = 0\), we can express one variable in terms of the others, for example, \(c = -a - b\). This substitution can help simplify the determinant further. ### Step 4: Evaluate the Determinant After substituting and simplifying, we can find that the determinant evaluates to zero. Thus, the matrix is singular. ### Conclusion Since the determinant of the matrix is zero, we conclude that the matrix \(A\) is a **singular matrix**.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Numerical Answer Type Questions)|20 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. AIEEE /JEE Main Papers|71 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise EXERCISE ( LEVEL -1) (Single Correct Answer Type Questions)|43 Videos
  • MATHEMATICAL REASONING

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B. ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • PARABOLA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTRE ENTRANCE EXAMINATION PAPERS|9 Videos

Similar Questions

Explore conceptually related problems

If 1 + (1)/(a) + (1)/(b) + (1)/(c) = 0 , then Delta = |(1 +a,1,1),(1,1 +b,1),(1,1,1 +c)| is equal to

If a != 0, b!= 0, c!= 0 , then |(1 +a,1,1),(1,1 +b,1),(1,1,1 +c)| is equal to

If a, b and c are all different from zero and Delta = |(1 +a,1,1),(1,1 +b,1),(1,1,1 +c)| = 0 , then the value of (1)/(a) + (1)/(b) + (1)/(c) is

If a,b, and c be non-zero real numbers such that |{:(1+a,1,1),(1,1+b,1),(1,1,1+c):}|=0" " "then"" "1+1/a+1/b+1/c is

If a, b and c are non-zero real numbers and |(1+a,1,1),(1,1+b,1),(1,1,1+c)|=0 , then what is the value of (1)/(a) + (1)/(b) + (1)/(c) ?

If a,b,c are in H .P.then (1)/(a)+(1)/(b+c),(1)/(b)+(1)/(a+c),(1)/(c)+(1)/(a+b) are in

If a b c are positive real numbers such that a+b+c=1 then the least value of ((1+a)(1+b)(1+c))/((1-a)(1-b)(1-c)) is

MCGROW HILL PUBLICATION-MATRICES-EXERCISE ( LEVEL -2 ) ( single Correct Answer Type Questions)
  1. If [(1,-tan theta),(tan theta,1)][(1,tan theta),(-tan theta,1)]^(-1)=[...

    Text Solution

    |

  2. If a,b,c ne0 and a+b+c=0 then the matrix [(1+(1)/(a),1,1),(1,1+(1)/(...

    Text Solution

    |

  3. Suppose matrix A satisfies the equation A^(2) -5A +7I=O . If A^(8)=aA+...

    Text Solution

    |

  4. If alpha, beta, gamma are three real numbers and A=[(1,cos (alpha-beta...

    Text Solution

    |

  5. Let A(theta)= ((sin theta,i costheta),(icostheta, sin theta)), then

    Text Solution

    |

  6. Let A and B are two matrices such that AB = BA, then for every n in ...

    Text Solution

    |

  7. Let A=[{:(1,2,1),(0,1,-1),(3,1,1):}]. Find the sum of all the value of...

    Text Solution

    |

  8. Let a,b,c in R be such that a+b+c gt 0 and abc = 2 . Let A = [(a,b,c...

    Text Solution

    |

  9. If A is a 3xx3 skew -symmetric matrix with real entries and trace of A...

    Text Solution

    |

  10. Suppose A and B are two 3xx3 non -singular matrices such that (AB)^(...

    Text Solution

    |

  11. Let A be a square matrix of order 3 such that |Adj A | =100 then |A| ...

    Text Solution

    |

  12. Let M be a 3xx3 matrix satisfying M[{:(0),(1),(0):}]=[{:(-1),(2),(3):}...

    Text Solution

    |

  13. If A , B and A+B are non -singular matrices then (A^(-1)+B^(-1)) [(A...

    Text Solution

    |

  14. If A+B is a non -singular matrix then A-B -A(A+B)^(-1)A+B(A+B)^(-1) ...

    Text Solution

    |

  15. If A and B are two matrices such that A+B =AB , then

    Text Solution

    |

  16. Let A=((a,b), (c,d)) such that A^3=0, then a+d equals

    Text Solution

    |

  17. Let A = ((0,x,0),(y,0,-x),(0,y,0)) then A^(3) equals

    Text Solution

    |