Home
Class 12
MATHS
If int(dx)/(xsqrt(5x^(2)-3))=Ktan^(-1)f(...

If `int(dx)/(xsqrt(5x^(2)-3))=Ktan^(-1)f(x)+C` then

A

`f(x) = sqrt((5)/(3)x^(2)-1),K=(1)/(sqrt(5))`

B

`f(x) = sqrt((5)/(3)x^(2)-1),K=(1)/(sqrt(3))`

C

`f(x) = (1)/(2)sqrt(5x^(2)-3,)K=(1)/(sqrt(5)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{x \sqrt{5x^2 - 3}}, \] we will follow these steps: ### Step 1: Rewrite the Integral We can rewrite the integral as: \[ I = \int \frac{1}{x \sqrt{5x^2 - 3}} \, dx. \] ### Step 2: Substitution Let \( t^2 = 5x^2 - 3 \). Then, differentiating both sides gives: \[ 2t \, dt = 10x \, dx \implies dx = \frac{t \, dt}{5x}. \] Now, we need to express \( x \) in terms of \( t \): \[ x^2 = \frac{t^2 + 3}{5} \implies x = \sqrt{\frac{t^2 + 3}{5}}. \] ### Step 3: Substitute in the Integral Substituting \( dx \) and \( x \) into the integral: \[ I = \int \frac{1}{\sqrt{\frac{t^2 + 3}{5}} \sqrt{t^2}} \cdot \frac{t \, dt}{5 \sqrt{\frac{t^2 + 3}{5}}} = \int \frac{t \, dt}{5 \cdot \frac{t^2 + 3}{5} \cdot t} = \int \frac{dt}{t^2 + 3}. \] ### Step 4: Integrate The integral \[ \int \frac{dt}{t^2 + 3} \] can be solved using the formula \[ \int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) + C. \] Here, \( a^2 = 3 \) so \( a = \sqrt{3} \): \[ I = \frac{1}{\sqrt{3}} \tan^{-1} \left( \frac{t}{\sqrt{3}} \right) + C. \] ### Step 5: Substitute Back Now substituting back \( t = \sqrt{5x^2 - 3} \): \[ I = \frac{1}{\sqrt{3}} \tan^{-1} \left( \frac{\sqrt{5x^2 - 3}}{\sqrt{3}} \right) + C. \] ### Step 6: Compare with Given Form We are given that \[ I = K \tan^{-1}(f(x)) + C. \] From our result, we can identify: \[ K = \frac{1}{\sqrt{3}}, \quad f(x) = \frac{\sqrt{5x^2 - 3}}{\sqrt{3}}. \] ### Final Answer Thus, we find: \[ K = \frac{1}{\sqrt{3}}, \quad f(x) = \frac{\sqrt{5x^2 - 3}}{\sqrt{3}}. \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLE ( LEVEL 2 (SINGLE CORRECT ANSWER TYPE QUESTION ))|23 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLE ( NUMERICAL ANSWER TYPE QUESTION )|16 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B - ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • HYPERBOLA

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS |3 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(xsqrt(x^(2)-4))

int(dx)/(xsqrt(x^(6)-1))=?

int(dx)/(xsqrt(1-x^(3)))dx=

int(1)/(x.sqrt(1-x^(3)))dx=

int(dx)/(xsqrt(x^(6)+1)) equals

int (1)/(xsqrt(x))dx

int 1/(xsqrt(x^2-1)) dx =

int(1)/(xsqrt(x-1))dx=