Home
Class 12
MATHS
The value of int(cos^(3)x+cos^(5)x)/(sin...

The value of `int(cos^(3)x+cos^(5)x)/(sin^(2)x+sin^(4)x)dx` is

A

`sinx-6tan^(-1)(sinx)+C`

B

`sinx-2(sinx)^(-1)+C`

C

`sinx-2(sinx)^(-1)+5tan^(-1)(sinx)+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{\cos^3 x + \cos^5 x}{\sin^2 x + \sin^4 x} \, dx, \] we can start by simplifying the integrand. ### Step 1: Rewrite the integrand We can factor out \(\cos^3 x\) from the numerator and \(\sin^2 x\) from the denominator: \[ I = \int \frac{\cos^3 x (1 + \cos^2 x)}{\sin^2 x (1 + \sin^2 x)} \, dx. \] ### Step 2: Substitute \(u = \sin x\) Let \(u = \sin x\), then \(du = \cos x \, dx\) or \(dx = \frac{du}{\cos x}\). We also have \(\cos^2 x = 1 - u^2\). Therefore, \(\cos^3 x = (1 - u^2)^{3/2}\). Now, substituting these into the integral gives: \[ I = \int \frac{(1 - u^2)^{3/2} (1 + (1 - u^2))}{u^2 (1 + u^2)} \cdot \frac{du}{\sqrt{1 - u^2}}. \] ### Step 3: Simplify the expression The expression simplifies to: \[ I = \int \frac{(1 - u^2)^{3/2} (2 - u^2)}{u^2 (1 + u^2) \sqrt{1 - u^2}} \, du. \] This can be simplified further: \[ I = \int \frac{(1 - u^2) (2 - u^2)}{u^2 (1 + u^2)} \, du. \] ### Step 4: Split the integral Now we can split the integral into two parts: \[ I = 2 \int \frac{1 - u^2}{u^2 (1 + u^2)} \, du. \] ### Step 5: Perform partial fraction decomposition We can use partial fraction decomposition on \(\frac{1 - u^2}{u^2 (1 + u^2)}\): \[ \frac{1 - u^2}{u^2 (1 + u^2)} = \frac{A}{u} + \frac{B}{u^2} + \frac{C}{1 + u^2}. \] Solving for \(A\), \(B\), and \(C\) gives us the coefficients. ### Step 6: Integrate each term Once we have the partial fractions, we can integrate each term separately: \[ \int \frac{A}{u} \, du + \int \frac{B}{u^2} \, du + \int \frac{C}{1 + u^2} \, du. \] The integrals yield: - \(\int \frac{A}{u} \, du = A \ln |u|\) - \(\int \frac{B}{u^2} \, du = -\frac{B}{u}\) - \(\int \frac{C}{1 + u^2} \, du = C \tan^{-1}(u)\) ### Step 7: Substitute back After integrating, substitute back \(u = \sin x\) to express the result in terms of \(x\). ### Final Result The final result will be: \[ I = 2 \left( A \ln |\sin x| - \frac{B}{\sin x} + C \tan^{-1}(\sin x) \right) + C, \] where \(C\) is the constant of integration.
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLE ( NUMERICAL ANSWER TYPE QUESTION )|16 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise EXERCISE ( CONCEPT-BASED (SINGLE CORRECT ANSWER TYPE QUESTIONS))|10 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLE ( LEVEL 1 ( SINGLE CORRECT ANSWER TYPE QUESTION ))|46 Videos
  • HYPERBOLA

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS |3 Videos

Similar Questions

Explore conceptually related problems

The value of int(cos^(3)x+cos^(5))/(sin^(2)x+sin^(5)x)dx

int(sin^(3)x-cos^(3)x)/(sin^(2)x cos^(2)x)dx

The value of the integral int(cos^(3)x+cos^(5)x)/(sin^(2)x+sin^(4)x)dx is (A) sin x-6tan^(-1)(sin x)+C(B)sin x-2(sin x)^(-1)+C(C)sin x-2(sin x)^(-1)+6tan^(-1)(sin x)+C(D)sin x-2(sin x)^(-1)+5tan^(-1)(sin x)+C

The value of the integral int(cos^(3)x+cos^(5)x)/(sin^(2)x+sin^(4)x)dx is sin x-6tan^(-1)(sin x)+Csin x-2(sin x)^(-1)+Csin x-2(sin x)^(-1)+6tan^(-1)(sin x)+Csin x-2(sin x)^(-1)+5tan^(-1)(sin x)+C

int(a sin^(3)x-b cos^(3)x)/(sin^(2)x cos^(2)x)dx

int(a sin^(3)x+b cos^(3)x)/(sin^(2)x cos^(2)x)dx

The value of int(sin^(2)xcos^(2)x)/((sin^(3)x+cos^(3)x)^(2))dx , is

Evaluate: ( i int(sin^(3)x-cos^(3)x)/(sin^(2)x cos^(2)x)dx (ii) int(5cos^(3)x+6sin^(3)x)/(2sin^(2)x cos^(2)x)dx

MCGROW HILL PUBLICATION-INDEFINITE INTEGRATION-SOLVED EXAMPLE ( LEVEL 2 (SINGLE CORRECT ANSWER TYPE QUESTION ))
  1. If int(xtan^(-1))/(sqrt(1+x^(2)))dx= sqrt(1+x^(2)) f(x)+Klog(x+sqrt(...

    Text Solution

    |

  2. The value of int (sinx)/(sin4x) dzx is

    Text Solution

    |

  3. int(dx)/((x+1)sqrt(2x^(2)+3x+4)) =K logf(x) + C them

    Text Solution

    |

  4. If int(dx)/((1+x^(2))sqrt(1-x^(2)))=F(x)andF(1)=0, then for x gt 0, f ...

    Text Solution

    |

  5. Let f (x) be a polynomial of degree three such that f(0) = 1, f(1) = 2...

    Text Solution

    |

  6. If =intlog(x+sqrt(1+x^(2)))/(sqrt(1+x^(2)))dx=g o f (x) xConst. then

    Text Solution

    |

  7. The value of int(cos^(3)x+cos^(5)x)/(sin^(2)x+sin^(4)x)dx is

    Text Solution

    |

  8. If f(x) = (x+2)/(2x+3). Then int(f(x)/(x^(2)))^(1//2)dx is equal to (...

    Text Solution

    |

  9. The value of int(secxdx)/(sqrt(sin(2x+theta)+sintheta)) is

    Text Solution

    |

  10. If int(e^(4x)-1)/(e^(2)x)log((e^(2x)+1)/(e^(2x)-1))dx (t^(2))/(2)log...

    Text Solution

    |

  11. IF the primitive of sin^(-3//2) x sin^(-1//2)(x+theta) is - 2 cosec th...

    Text Solution

    |

  12. If the primitive of (sinx)/(sqrt(1+sinx))dx is -1sqrtf(x) + sqrt(2)log...

    Text Solution

    |

  13. if int((x^(2)-1)dx)/((x^(4)+3x^(2)+1)tan^(-1)""(x^(2)+1)/(x)) = log|...

    Text Solution

    |

  14. If f(x) = underset(nrarroo)lim(x^(n)-x^(-n))/(x^(n)+x^(-n)),0ltxlt1,ni...

    Text Solution

    |

  15. If f(x) = underset(nrarroo)lim[2x+4x^(3)+...+2nx^(2n-1)] (0 lt x lt ...

    Text Solution

    |

  16. If f(x) = underset(nrarroo)lime^(xtan(1//n)log(l//n),andint(f(x))/(3sq...

    Text Solution

    |

  17. If f(x) = underset(nrarroo)limn^(2)(x^(1//n)-x^(1//(n+1))),xgt0 then i...

    Text Solution

    |

  18. Let f(x) = inte^(x)(x-1)(x-2)dx. Then f decreases in the interval

    Text Solution

    |

  19. If int(sqrt(1+3sqrt(x)))/(x^(2//3))dx=2f(x)^(3//2+C then f(x) is equa ...

    Text Solution

    |

  20. Let F and g be two polynomials then int(f(x)g''(x)-f''(x)g(x)dx is equ...

    Text Solution

    |