Home
Class 12
MATHS
If int(0)^(pi//4) (x sin x)/( cos^(3) x)...

If `int_(0)^(pi//4) (x sin x)/( cos^(3) x) dx= (pi)/(4) +A`, then A is equal to

A

`0`

B

`1/2`

C

`1`

D

`-1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{4}} \frac{x \sin x}{\cos^3 x} \, dx \) and find the value of \( A \) such that \( I = \frac{\pi}{4} + A \), we will use integration by parts. ### Step 1: Set up integration by parts We will use the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] Let: - \( u = x \) (thus \( du = dx \)) - \( dv = \frac{\sin x}{\cos^3 x} \, dx \) ### Step 2: Find \( v \) To find \( v \), we need to integrate \( dv \): \[ v = \int \frac{\sin x}{\cos^3 x} \, dx \] Using the substitution \( w = \cos x \), we have \( dw = -\sin x \, dx \), or \( \sin x \, dx = -dw \). Thus, we can rewrite the integral: \[ v = -\int \frac{1}{w^3} \, dw = \frac{1}{2w^2} = \frac{1}{2 \cos^2 x} \] ### Step 3: Apply integration by parts Now we apply the integration by parts formula: \[ I = uv \bigg|_{0}^{\frac{\pi}{4}} - \int v \, du \] Substituting \( u \) and \( v \): \[ I = \left[ x \cdot \frac{1}{2 \cos^2 x} \right]_{0}^{\frac{\pi}{4}} - \int_{0}^{\frac{\pi}{4}} \frac{1}{2 \cos^2 x} \, dx \] ### Step 4: Evaluate the boundary term Now we evaluate the boundary term: \[ \left[ x \cdot \frac{1}{2 \cos^2 x} \right]_{0}^{\frac{\pi}{4}} = \left( \frac{\pi/4}{2 \cdot \cos^2(\pi/4)} \right) - \left( 0 \cdot \frac{1}{2 \cos^2(0)} \right) \] Calculating \( \cos^2(\pi/4) = \left( \frac{1}{\sqrt{2}} \right)^2 = \frac{1}{2} \): \[ = \frac{\pi/4}{2 \cdot \frac{1}{2}} = \frac{\pi/4}{1} = \frac{\pi}{4} \] ### Step 5: Evaluate the integral term Now we need to evaluate the integral: \[ \int_{0}^{\frac{\pi}{4}} \frac{1}{2 \cos^2 x} \, dx = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \sec^2 x \, dx \] The integral of \( \sec^2 x \) is \( \tan x \): \[ = \frac{1}{2} \left[ \tan x \right]_{0}^{\frac{\pi}{4}} = \frac{1}{2} \left( \tan\left(\frac{\pi}{4}\right) - \tan(0) \right) = \frac{1}{2} (1 - 0) = \frac{1}{2} \] ### Step 6: Combine results Putting it all together: \[ I = \frac{\pi}{4} - \frac{1}{2} \] Thus, we have: \[ I = \frac{\pi}{4} - \frac{1}{2} \] Given \( I = \frac{\pi}{4} + A \), we can equate: \[ \frac{\pi}{4} - \frac{1}{2} = \frac{\pi}{4} + A \] This leads to: \[ A = -\frac{1}{2} \] ### Final Answer Thus, the value of \( A \) is: \[ \boxed{-\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1) Single Correct Answer Type Questions|43 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2) Single Correct Answer Type Questions|38 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Numerical Answer Type Questions)|16 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos

Similar Questions

Explore conceptually related problems

int _(0) ^(pi//4) ( sin x )/( cos ^(3) x) dx equal to :

int_(0)^((pi)/(4))(sin x)/(cos3x+3cos x)dx

int_(0)^( pi/4)(sin x-cos x)dx

int_(0)^((pi)/(2))(4-3sin x)/(4+3cos x)dx

int_(0)^(pi//4)(sin 2 x)/(sin^(4) x + cos^(4) x ) dx =

int_(0)^( pi)x*sin x*cos^(4)x*dx

Prove that: int_(0)^( pi/2)(sin x)/(sin x-cos x)dx=(pi)/(4)

Prove that : int_(0)^(pi) (x sin x)/(1+cos^(2)x) dx =(pi^(2))/(4)