Home
Class 12
MATHS
If for n ge 1, P(n) = int(1)^( e) (log x...

If for `n ge 1, P_(n) = int_(1)^( e) (log x)^(n) dx`, then `P_(10) - 90P_(8)` is equal to

A

`-9`

B

`10e`

C

`-9e`

D

`10`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate \( P_{10} - 90P_{8} \) where \( P_n = \int_{1}^{e} (\log x)^{n} \, dx \). ### Step-by-Step Solution: 1. **Define \( P_n \)**: \[ P_n = \int_{1}^{e} (\log x)^{n} \, dx \] 2. **Use Integration by Parts**: We can use integration by parts to evaluate \( P_n \). Let: - \( u = (\log x)^{n} \) → \( du = n (\log x)^{n-1} \cdot \frac{1}{x} \, dx \) - \( dv = dx \) → \( v = x \) Then, the integration by parts formula \( \int u \, dv = uv - \int v \, du \) gives us: \[ P_n = \left[ x (\log x)^{n} \right]_{1}^{e} - \int_{1}^{e} x \cdot n (\log x)^{n-1} \cdot \frac{1}{x} \, dx \] Simplifying, we have: \[ P_n = \left[ e (\log e)^{n} - 1 \cdot (\log 1)^{n} \right] - n P_{n-1} \] Since \( \log e = 1 \) and \( \log 1 = 0 \): \[ P_n = e - n P_{n-1} \] 3. **Recursive Relation**: We have established a recursive relation: \[ P_n = e - n P_{n-1} \] 4. **Calculate \( P_{10} \) and \( P_{8} \)**: We can use the recursive relation to find \( P_{10} \) and \( P_{8} \): - For \( n = 10 \): \[ P_{10} = e - 10 P_{9} \] - For \( n = 9 \): \[ P_{9} = e - 9 P_{8} \] - For \( n = 8 \): \[ P_{8} = e - 8 P_{7} \] 5. **Substituting Back**: We can substitute back to express \( P_{10} \) in terms of \( P_{8} \): \[ P_{9} = e - 9 P_{8} \implies P_{10} = e - 10(e - 9 P_{8}) = e - 10e + 90 P_{8} = -9e + 90 P_{8} \] 6. **Final Calculation**: Now we can compute \( P_{10} - 90P_{8} \): \[ P_{10} - 90P_{8} = (-9e + 90 P_{8}) - 90 P_{8} = -9e \] ### Conclusion: Thus, the value of \( P_{10} - 90P_{8} \) is: \[ \boxed{-9e} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2) Numerical Answer Type Questions|19 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos

Similar Questions

Explore conceptually related problems

If I_(n)=int_(1)^(e)(log x)^(n)dx then I_(8)+8I_(7)=

If I_(n)=int_(1)^(e)(log x)^(n) d x, then I_(n)+nI_(n-1) equal to

If u_(n)=int(log x)^(n)dx, then u_(n)+nu_(n-1) is equal to :

If I_(m,n)= int_(0)^(1) x^(m) (ln x)^(n) dx then I_(m,n) is also equal to

If P_(n) = cos^(n) theta + sin^(n) theta 6P_(10) -15P_(8) + 10P_(6) is equal to

If P_(n) = cos^(n)theta +sin^(n)theta , then P_(2) - P_(1) is equal to :

If I_(m)=int_(1)^(e)(ln x)^(m)dx,m in N, then I_(10)+10I_(9) is equal to (A) e^(10)(B)(e^(10))/(10)(C)e(D)e-1

int_(0)^(1)(log(1)/(x))^(n-1)dx equals

I_(n)=int_(1)^(e)(log)^(n)dx and I_(n)=A+BI_(n+1) then A&B=

(n-1)P_(r)+r.n-1)P_(n-1) is equal to

MCGROW HILL PUBLICATION-DEFINITE INTEGRALS-Questions from Previous Years. AIEEE/ JEE Main Papers
  1. The integral int0^pisqrt(1+4sin^2x/2-4sinx/2dx) equal (1) pi-4 (2)...

    Text Solution

    |

  2. the integral int0^(1/2) (ln(1+2x))/(1+4x^2) dx equals

    Text Solution

    |

  3. If for n ge 1, P(n) = int(1)^( e) (log x)^(n) dx, then P(10) - 90P(8) ...

    Text Solution

    |

  4. int(0)^(pi)[cos x] dx, [ ] denotes the greatest integer function , is ...

    Text Solution

    |

  5. If for a continuous function f(x), int(-pi)^(t) (f(x)+ x) dx= pi^(2) -...

    Text Solution

    |

  6. Let function F be defined as f(x)= int1^x e^t/t dt x > 0 then the v...

    Text Solution

    |

  7. The integral int2^4(logx^2)/(logx^2+log(36-12 x+x^2)dx is equal to:...

    Text Solution

    |

  8. Let f: RR rarr RR be a function such that f(2 - x) =f(2 + x) and f(4-x...

    Text Solution

    |

  9. Let f : (-1,1) to R be continous function , if int (0)^(sinx) f(t)...

    Text Solution

    |

  10. If f(x)=underset(1)overset(x)int (log t)/(1+t) dt"then" f(x)+f((1)/(x)...

    Text Solution

    |

  11. If 2int0^1 tan^(-1)x dx= int0^1 cot^(-1)(1-x+x^2) dx then int0^1 tan^(...

    Text Solution

    |

  12. underset (n rarr infty )(lim) [((n+1)(n+2)...3n)/(n^(2n))]^(1//n) is e...

    Text Solution

    |

  13. int4^10([x^2])/([x^2-28 x+196]+[x^2])dx is (A) 3 (B) 5 (C) 7 (D) 9

    Text Solution

    |

  14. The integral int(pi/12)^(pi/4)(8cos2x)/((tanx+cotx)^3)dx equals

    Text Solution

    |

  15. If int(1)^(2) (dx)/( (x^(2) -2x + 4)^(3/2))=(k)/( k+5) then k is equal...

    Text Solution

    |

  16. int(pi//4)^(3pi//4)(dx)/(1+cos x)=

    Text Solution

    |

  17. Find a for which lim(n->oo) (1^a+2^a+3^a+...+n^a)/((n+1)^(a-1)[(na+1)+...

    Text Solution

    |

  18. If i is the greatest of the definite integrals I1=int0^1 e^-x cos ^2 ...

    Text Solution

    |

  19. The value of the integral int(-pi//2)^(pi//2) sin^(4) x (1+ log ((2+ s...

    Text Solution

    |

  20. The value of int(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x))dx is

    Text Solution

    |