Home
Class 12
MATHS
If the line through the points (h, 7) an...

If the line through the points (h, 7) and (2, 3) intersects the line `3x-4y-5=0` at right angles, then the value of h is

A

`-1`

B

1

C

5

D

`-5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the value of \( h \) such that the line through the points \( (h, 7) \) and \( (2, 3) \) intersects the line given by the equation \( 3x - 4y - 5 = 0 \) at right angles. ### Step 1: Find the slope of the line through the points \( (h, 7) \) and \( (2, 3) \). The formula for the slope \( m_1 \) of a line through two points \( (x_1, y_1) \) and \( (x_2, y_2) \) is given by: \[ m_1 = \frac{y_2 - y_1}{x_2 - x_1} \] Substituting the points \( (h, 7) \) and \( (2, 3) \): \[ m_1 = \frac{3 - 7}{2 - h} = \frac{-4}{2 - h} \] ### Step 2: Find the slope of the line given by the equation \( 3x - 4y - 5 = 0 \). We need to convert this equation into the slope-intercept form \( y = mx + c \). Starting with: \[ 3x - 4y - 5 = 0 \] Rearranging gives: \[ 4y = 3x - 5 \] Dividing by 4: \[ y = \frac{3}{4}x - \frac{5}{4} \] Thus, the slope \( m_2 \) of this line is: \[ m_2 = \frac{3}{4} \] ### Step 3: Use the condition for perpendicular lines. Two lines are perpendicular if the product of their slopes is \( -1 \). Thus, we have: \[ m_1 \cdot m_2 = -1 \] Substituting the values of \( m_1 \) and \( m_2 \): \[ \left(\frac{-4}{2 - h}\right) \cdot \left(\frac{3}{4}\right) = -1 \] ### Step 4: Simplify and solve for \( h \). Multiplying both sides by \( 4(2 - h) \) to eliminate the fraction: \[ -4 \cdot 3 = -1 \cdot 4(2 - h) \] This simplifies to: \[ -12 = -4(2 - h) \] Distributing the \( -4 \): \[ -12 = -8 + 4h \] Adding 8 to both sides: \[ -12 + 8 = 4h \] \[ -4 = 4h \] Dividing by 4: \[ h = -1 \] ### Final Answer: The value of \( h \) is \( -1 \). ---
Promotional Banner

Topper's Solved these Questions

  • CARTESIAN SYSTEM OF RECTANGULAR COORDINATES AND STRAIGHT LINES

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1) SINGLE CORRECT ANSWER TYPE QUESTIONS|60 Videos
  • CARTESIAN SYSTEM OF RECTANGULAR COORDINATES AND STRAIGHT LINES

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2) SINGLE CORRECT ANSWER TYPE QUESTIONS|21 Videos
  • CARTESIAN SYSTEM OF RECTANGULAR COORDINATES AND STRAIGHT LINES

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS)|25 Videos
  • AREA BY INTEGRATION

    MCGROW HILL PUBLICATION|Exercise Question from Previous Years. B-Architecture Entrance Examination Papers|12 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|17 Videos

Similar Questions

Explore conceptually related problems

The line through the points (h,3) and (4,1) intersects the line 7x-9y-19=0 at right angle.Find the value of h.

If a line passes through the points (a,1) and (3,-5) , meets the line 3x+y-1=0 at right angle, then find the value of 'a' .

The line through (h ,3)a n d\ (4,1) intersects the line k 7x-9y-19=0 at right angle. Find the value of hdot

The line through (4, 3) and (-6, 0) intersects the line 5x+y=0 . Find the angles of intersection.

Find the equations of the lines through the point of intersection of the lines x-y+1=0 and 2x-3y+5=0 whose distance from the point (3,2) is (7)/(5)

The locus of midpoints of the perpendiculars drawn from points on line x=2y to the line x=y is L_(1) .Suppose (h,k) lies on L_(1) .If line L_(2) passing through the points (h,k) and (4, 3) is perpendicular to L_(1) ,then the value of 7h+5k is

Find the equation of the line passing through the point (4,-14,4) and intersecting the line of intersection of the planes : planes :3x+2y-z=5 and x-2y-27=-1 at right angles.

A pair of straight lines passing through origin and the point of intersection of the curve x^(2)+y^(2)=4 and the line x+y=a , are at right angle then the value of 'a' is

Find the equation of the line through the point of intersection of the lines 3x-4y+1=0 and 5x+y-1=0 and perpendicular to the line 2x-3y=10

If theta is the angle between the lines given by the equation 6x^(2)+5xy-4y^(2)+7x+13y-3=0, then find the equation of the line passing through the point of intersection of these lines and making an angle theta with the positive x -axis.

MCGROW HILL PUBLICATION-CARTESIAN SYSTEM OF RECTANGULAR COORDINATES AND STRAIGHT LINES -EXERCISE (CONCEPT - BASED) SINGLE CORRECT ANSWER TYPE QUESTIONS
  1. A is a point on the positive x-axis at a distance 3 units from the ori...

    Text Solution

    |

  2. The slopes of the line which passes through the origin, and the mid - ...

    Text Solution

    |

  3. Distance between P (x(1), y(1)) and Q (x(2), y(2)) when PQ is parallel...

    Text Solution

    |

  4. The lines parallel to the axes and passing through the point (4, -5) a...

    Text Solution

    |

  5. The equation of the line whose perpendicular distance from the origin ...

    Text Solution

    |

  6. Points (8, 2), (-2, -2) and (3, 0) are the vertices of

    Text Solution

    |

  7. If the angle between the lines sqrt(3)y-x+4=0 and x+y-6=0 is theta, th...

    Text Solution

    |

  8. Equation of the line passing through the point (a-1), (a+1) and making...

    Text Solution

    |

  9. The angle which the normal to the line x-sqrt(3)y+8=0 passing through ...

    Text Solution

    |

  10. If the line through the points (h, 7) and (2, 3) intersects the line 3...

    Text Solution

    |

  11. Equation of a line passing through the intersection of the lines 7x-y+...

    Text Solution

    |

  12. The value of p for which the lines 2x+y-3=0, 3x-y-2=0 and x-py+5=0 may...

    Text Solution

    |

  13. Find equation of the line which is equidistant from parallel lines ...

    Text Solution

    |

  14. Find the area of the triangle formed by the lines y-x=0,x+y=0and x-k=0...

    Text Solution

    |

  15. The distance of the line 2x+3y-5=0 from the point (3, 5) along the lin...

    Text Solution

    |