Home
Class 12
MATHS
Let u=2i-j+3k" and "a=4i-j+2k. The vecto...

Let `u=2i-j+3k" and "a=4i-j+2k`. The vector component of u orthogonal to a is

A

`(1//7)(20i-5j+10k)`

B

`(1//7)(4i+24j+4k)`

C

`(1//7)(11i+2j+6k)`

D

`(-1//7)(6i+2j-11k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the vector component of \( \mathbf{u} \) orthogonal to \( \mathbf{a} \), we can follow these steps: ### Step 1: Identify the given vectors We have: \[ \mathbf{u} = 2\mathbf{i} - \mathbf{j} + 3\mathbf{k} \] \[ \mathbf{a} = 4\mathbf{i} - \mathbf{j} + 2\mathbf{k} \] ### Step 2: Calculate the dot product \( \mathbf{u} \cdot \mathbf{a} \) The dot product is calculated as follows: \[ \mathbf{u} \cdot \mathbf{a} = (2)(4) + (-1)(-1) + (3)(2) \] Calculating each term: \[ = 8 + 1 + 6 = 15 \] ### Step 3: Calculate the magnitude of vector \( \mathbf{a} \) The magnitude of \( \mathbf{a} \) is given by: \[ |\mathbf{a}| = \sqrt{(4)^2 + (-1)^2 + (2)^2} = \sqrt{16 + 1 + 4} = \sqrt{21} \] ### Step 4: Find the projection of \( \mathbf{u} \) onto \( \mathbf{a} \) The projection of \( \mathbf{u} \) onto \( \mathbf{a} \) is given by: \[ \text{proj}_{\mathbf{a}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{a}}{|\mathbf{a}|^2} \mathbf{a} \] Calculating \( |\mathbf{a}|^2 \): \[ |\mathbf{a}|^2 = 21 \] Now substituting the values: \[ \text{proj}_{\mathbf{a}} \mathbf{u} = \frac{15}{21} \mathbf{a} = \frac{5}{7} \mathbf{a} \] Substituting \( \mathbf{a} \): \[ = \frac{5}{7} (4\mathbf{i} - \mathbf{j} + 2\mathbf{k}) = \left(\frac{20}{7}\mathbf{i} - \frac{5}{7}\mathbf{j} + \frac{10}{7}\mathbf{k}\right) \] ### Step 5: Calculate the vector component of \( \mathbf{u} \) orthogonal to \( \mathbf{a} \) The vector component of \( \mathbf{u} \) orthogonal to \( \mathbf{a} \) is given by: \[ \mathbf{u}_{\perp} = \mathbf{u} - \text{proj}_{\mathbf{a}} \mathbf{u} \] Substituting the values: \[ \mathbf{u}_{\perp} = (2\mathbf{i} - \mathbf{j} + 3\mathbf{k}) - \left(\frac{20}{7}\mathbf{i} - \frac{5}{7}\mathbf{j} + \frac{10}{7}\mathbf{k}\right) \] Calculating each component: - For \( \mathbf{i} \): \[ 2 - \frac{20}{7} = \frac{14}{7} - \frac{20}{7} = -\frac{6}{7} \] - For \( \mathbf{j} \): \[ -1 + \frac{5}{7} = -\frac{7}{7} + \frac{5}{7} = -\frac{2}{7} \] - For \( \mathbf{k} \): \[ 3 - \frac{10}{7} = \frac{21}{7} - \frac{10}{7} = \frac{11}{7} \] Thus, the vector component of \( \mathbf{u} \) orthogonal to \( \mathbf{a} \) is: \[ \mathbf{u}_{\perp} = -\frac{6}{7}\mathbf{i} - \frac{2}{7}\mathbf{j} + \frac{11}{7}\mathbf{k} \] ### Final Answer \[ \mathbf{u}_{\perp} = -\frac{6}{7}\mathbf{i} - \frac{2}{7}\mathbf{j} + \frac{11}{7}\mathbf{k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Numerical Answer Type Questions)|18 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. AIEEE/JEE MAIN PAPERS|65 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Level-1 Single Correct Answer Type Questions)|33 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

If u=i+j-k, v=2i+j+k" and "w=i+j+2k then the magnitude of projection of u times v on w is given by

If vec a=4i+6j and vec b=3j+6k vector form of the component of a along b is

Consider the vectors a = i- 2j + k and b= 4i- 4j + 7k What is the vector perpendicular to both the vectors?

If a=2i+2j+2k,b=5i-3j+k, then the length of the component vector of b perpendicular to a is

Let a=2i+4j-5k , b=i+j+k and c=j+2k .Find the unit vector in the opposite direction of a+b+c

MCGROW HILL PUBLICATION-VECTOR ALGEBRA-EXERCISE (Level-2 Single Correct Answer Type Questions)
  1. The one of the value of x for which the angle between c=x""i+j+k" and ...

    Text Solution

    |

  2. The line x = -2, y = 4 + 2t, z = -3 + t intersect

    Text Solution

    |

  3. Let u=2i-j+3k" and "a=4i-j+2k. The vector component of u orthogonal to...

    Text Solution

    |

  4. If a, b, c, d lie in the same plane then (a times b) times (c times d)...

    Text Solution

    |

  5. If ( a times b)*(c times d)=(a*c)(b*d)+k(a.d)(b.c) then the value of k...

    Text Solution

    |

  6. The distance between (5, 1, 3) and the line x = 3, y = 7 + t, z = 1 + ...

    Text Solution

    |

  7. The distance between the lines x=1-4t, y=2+t, z=3+2t" and "x=1+s, y=...

    Text Solution

    |

  8. The vertices of a triangle ABC are A (1,-2, 2), B (1, 4, 0) and C (-4...

    Text Solution

    |

  9. If a, b, c, are non-coplanar vectors such that (2h+k)a+(3-4h+l)b+(1+h+...

    Text Solution

    |

  10. Show that the angle between two diagonals of a cube is cos^(-1)sqrt(1/...

    Text Solution

    |

  11. The point of intersection of the lines r times a=b times a, r times b=...

    Text Solution

    |

  12. If a=a(1)i+a(2)j+a(3)k, b=b(1)i+b(2)j+b(3)k, c=c(1)i+c(2)j+c(3)k, d=d(...

    Text Solution

    |

  13. The value of (b times c)*(a times d)+(c times a)*(b times d)+(a times ...

    Text Solution

    |

  14. The lines r=b-2c+lambda(a+b)" and "r=2b-c+mu(b+c) intersect at the poi...

    Text Solution

    |

  15. If a=i+2j-3k, b=2i+j-k then the vector v satisfying a times v=a times ...

    Text Solution

    |

  16. The value of abs(a times(i timesj))^(2)+abs(a times(j timesk))^(2)+a...

    Text Solution

    |

  17. The locus of a point equidistant from two points with position vectors...

    Text Solution

    |

  18. A vector veca=(x,y,z) makes an obtuse angle with F-axis, and make equa...

    Text Solution

    |

  19. If a times b=c" and "b times c=a, then

    Text Solution

    |

  20. Let OABC be a regular tetrahedron, then angle between edges OA and BC ...

    Text Solution

    |