Home
Class 12
MATHS
int(x+1)^(2)e^(x)dx=...

`int(x+1)^(2)e^(x)dx=`

A

`x e^(x) + c`

B

`x^(2) e^(x) + c`

C

(x+1)`e^(x)` +c

D

`(x^(2) + 1)e^(x) + 1`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE -II|157 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|167 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE|16 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

Show that int_(e)^(e^(2))(1)/(log x) dx = int_(1)^(2)(e^(x))/(x) dx

Show that (a) int_(e)^(e^(2))(1)/(log x)dx = int_(1)^(2)(e^(x))/(x)dx (b) int_(t)^(1)(dx)/(1+x^(2)) = int_(1)^(1//t)(dx)/(1+x^(2))

If I_(1)=int_(e)^(e^(2))(dx)/(logx)andI_(2)=int_(1)^(2)(e^(x))/(x)dx, then

int_(1)^(e) e^(x)((x-1)/(x^(2)))dx=

int(1)/(e^(x)+e^(-x))dx

int x^(3)*e^(x^(2))dx=

Evaluate the following integrals int e^(x) (1+x^(2))dx

int ((1+x)e^(x))/(sin^(2)(x e^(x)))dx=

int (1)/(x^(2)) e^((x - 1)/(x)) dx =