Home
Class 10
MATHS
If the numbers 3k+4,7k+1and12k-5 are in ...

If the numbers `3k+4,7k+1and12k-5` are in A.P., then the value of k is

A

2

B

3

C

4

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( k \) such that the numbers \( 3k + 4 \), \( 7k + 1 \), and \( 12k - 5 \) are in arithmetic progression (A.P.). ### Step-by-step Solution: 1. **Understanding A.P. Condition**: For three numbers \( a_1, a_2, a_3 \) to be in A.P., the condition is: \[ a_2 - a_1 = a_3 - a_2 \] Here, \( a_1 = 3k + 4 \), \( a_2 = 7k + 1 \), and \( a_3 = 12k - 5 \). 2. **Setting Up the Equation**: Using the A.P. condition: \[ (7k + 1) - (3k + 4) = (12k - 5) - (7k + 1) \] 3. **Simplifying the Left Side**: Simplifying the left side: \[ 7k + 1 - 3k - 4 = 4k - 3 \] 4. **Simplifying the Right Side**: Simplifying the right side: \[ 12k - 5 - 7k - 1 = 5k - 6 \] 5. **Setting the Two Sides Equal**: Now we have: \[ 4k - 3 = 5k - 6 \] 6. **Rearranging the Equation**: Rearranging gives: \[ 4k - 5k = -6 + 3 \] This simplifies to: \[ -k = -3 \] 7. **Solving for k**: Multiplying both sides by -1 gives: \[ k = 3 \] ### Conclusion: The value of \( k \) is \( 3 \).
Promotional Banner

Topper's Solved these Questions

  • ARITHMETIC PROGRESSION (A.P.)

    MCGROW HILL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|15 Videos
  • ANALYTICAL REASONING

    MCGROW HILL PUBLICATION|Exercise EXERCISE|24 Videos
  • ARITHMETICAL REASONING TEST

    MCGROW HILL PUBLICATION|Exercise EXERCISE|25 Videos

Similar Questions

Explore conceptually related problems

If k-1,k+1 and 2k+3 are in AP , then the value of k is

If -5,k and -1 are in AP, then the value of k is equal to

If k, 2k-1 and 2k+1 are in A.P. then value of k is ……………

If k+2, 2k-5 and k+8 are in A.P., find the value of k.

8k+4,6k-2,2k+7 are in AP then the value of K is

If k+3, 5k-1 and 3k+2 are in A.P., find the value of k.

If k,k+1,k+3 are in G.P then find the value of k

If k, k + 1 and k + 3 are in G.P. then find the value of k.

If k , 2k - 1 and 2k + 1 are in AP , then find the value of k

If 2/3, k , (5k)/8 are n A.P., find the value of k