Home
Class 12
MATHS
The least value of the function f(x) = a...

The least value of the function `f(x) = ax + (b)/(x) (x gt 0, a gt 0, b gt 0)`

Text Solution

Verified by Experts

The least value of function f(x) = `ax+b/x` (where, `a gt 0, b gt0, x gt 0)` is `2sqrt(ab)`.
`therefore f^(')(x)= a-b/x^(2)` and `f^(')(x)=0`
`rArr a=b/x^(2)`
`rArr x^(2)=b/a rArr x = +- sqrt(b/a)`
Now, `f^('')(x)=-b. (-2)/x^(3)= +(2b)/(x^(3))`
At `x=sqrt(b/a)`, `f^('')(x) = +(2b)/(b/a)^(3//2)=(+2b.a^(3//2))/(b^(3//2))`
`=+2b^(-1//2).a^(3//2)=+2sqrt(a^(3)/b) gt 0` `[therefore a, b gt 0]`
`therefore` Least value of f(x), `f(sqrt(b.a))= a.sqrt(b/a) + b/(sqrt(b/a))`
`=a.a^(-1//2). b^(1//2)+b.b^(-1//2).a^(1//2)`
`=sqrt(ab) + sqrt(ab)=2sqrt(ab)`
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPES QUESTIONS|25 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos

Similar Questions

Explore conceptually related problems

The minmumu value of the fucntion f(x)=a^2/x+b^2/(a-x),a gt 0, b gt 0 , in (0,a) is

If the function f (x) = {{:(3,x lt 0),(12, x gt 0):} then lim_(x to 0) f (x) =

The function f(x) = x^(x) , x gt 0 , is increasing on the interval

Discuss the continuity of the function f(x) ={(3-x", "x le 0),(x", "x gt 0):} at x=0.

Which of the following is/are true for the function f(x)= int _(0) ^(x) ("cost")/(t ) dt (x gt 0) ?

The complete set of values of a for which the function f(x)=tan^(-1)(x^(2)-18x +a)gt 0 AA x in R is

The least integral value of x for which 33 - x(2 + 3x) gt 0 is

If the local minimum of the function f(x)=x^(3)-3a^(2)x+4(AA a gt 0) occurs at x=lambda (AA lambda gt 1) , then a may take the value

For what values of a and b, is the function f(x)= {(x^(2) "," x le c),(ax + b"," x gt c):} differentiable at x=c

The function f(x)=(2x^2-1)/x^4, x gt 0 decreases in the interval