Home
Class 12
MATHS
If sin^(-1)x=theta+betaa n dsin^(-1)y=th...

If `sin^(-1)x=theta+betaa n dsin^(-1)y=theta-beta,` then `1+x y` is equal to `sin^2theta+sin^2beta` (b) `sin^2theta+cos^2beta` `cos^2theta+cos^2theta` (d) `cos^2theta+sin^2beta`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : cos^2 theta + sin^2 theta cos 2 beta = cos^2 beta + sin^2 beta cos 2theta

Range of f(theta)=cos^2theta(cos^2theta+1)+2sin^2theta is

(1+sin 2theta+cos 2theta)/(1+sin2 theta-cos 2 theta) =

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?

Prove that cos^6 theta+ sin^6 theta= 1-3sin^2 theta cos^2 theta

Prove that: (1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=cot theta

Prove : (1+sin2theta-cos2theta)/(1+sin2theta+cos2theta)=tantheta

(sin theta + sin 2 theta)/( 1 + cos theta + cos 2 theta) = tan theta.

Evaluate int((2 sin theta + sin 2 theta)d theta)/((cos theta-1)sqrt(cos theta + cos^(2) theta + cos^(3) theta)) .

2(1-2sin^2 7theta)sin3theta is equal to a.\ sin 17theta-sin 11theta b. sin 11theta-sin 17theta c. cos 17theta-cos 11theta d. cos 17theta+cos 11theta