Home
Class 12
MATHS
Let f(x)=sec^(-1)[1+cos^(2)x], where [.]...

Let `f(x)=sec^(-1)[1+cos^(2)x],` where [.] denotes the greatest integer function. Then find the domain and range

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

Let f (x) = cosec^-1[1 + sin^2x], where [*] denotes the greatest integer function, then the range of f

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

Draw the graph of f(x)=(2^(x))/(2^([x])) where [.] represents greatest integer function and find the domain and range.

Let f(x)=[x]cos ((pi)/([x+2])) where [ ] denotes the greatest integer function. Then, the domain of f is (a) x epsilon R, x not an integer (b) x epsilon (-oo, -2)uu[-1,oo) (c) x epsilon R, x!=-2 (d) x epsilon (-oo,-1]

Range of f(x)=sin^(-1)[x-1]+2cos^(-1)[x-2] ([.] denotes greatest integer function)