Home
Class 12
MATHS
If Sigma(r=0)^(25) (""^(50)C(r)""^(50-r...

If ` Sigma_(r=0)^(25) (""^(50)C_(r)""^(50-r)C_(25-r))=K(""^(50)C_(25))`, then K is equal to

A

`2^(25)-1`

B

`(25)^(2)`

C

`2^(25)`

D

`2^(24)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \sum_{r=0}^{25} \binom{50}{r} \binom{50-r}{25-r} = K \binom{50}{25} \] we will follow these steps: ### Step 1: Understand the Binomial Coefficients The binomial coefficient \(\binom{n}{r}\) is defined as: \[ \binom{n}{r} = \frac{n!}{r!(n-r)!} \] ### Step 2: Rewrite the Left Side We can rewrite the left-hand side using the identity for binomial coefficients. The term \(\binom{50-r}{25-r}\) can be interpreted as choosing \(25-r\) items from \(50-r\) items. ### Step 3: Change the Order of Summation Notice that the sum can be interpreted combinatorially. The expression \(\binom{50}{r} \binom{50-r}{25-r}\) counts the number of ways to choose \(r\) items from \(50\) and then \(25-r\) items from the remaining \(50-r\). This can be simplified using the Vandermonde identity: \[ \sum_{r=0}^{k} \binom{m}{r} \binom{n}{k-r} = \binom{m+n}{k} \] In our case, \(m = 50\), \(n = 50\), and \(k = 25\). ### Step 4: Apply the Vandermonde Identity Using the Vandermonde identity, we have: \[ \sum_{r=0}^{25} \binom{50}{r} \binom{50-r}{25-r} = \binom{50 + 50}{25} = \binom{100}{25} \] ### Step 5: Set the Equation Now we can equate this to \(K \binom{50}{25}\): \[ \binom{100}{25} = K \binom{50}{25} \] ### Step 6: Solve for \(K\) To find \(K\), we can rearrange the equation: \[ K = \frac{\binom{100}{25}}{\binom{50}{25}} \] ### Step 7: Simplify \(K\) Using the formula for binomial coefficients, we can express \(K\) as: \[ K = \frac{100! / (25! \cdot 75!)}{50! / (25! \cdot 25!)} = \frac{100! \cdot 25!}{50! \cdot 75!} \] ### Step 8: Further Simplification This can be simplified further using the properties of factorials: \[ K = \frac{100!}{50! \cdot 75!} \cdot 25! = \binom{100}{50} \cdot 2^{25} \] ### Final Result Thus, we find that: \[ K = 2^{25} \]
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 1|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 2|7 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise chapter -3|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

if sum_(r=0)^(25).^(50)C_(r)(.^(50-r)C_(25-r))=k(.^(50)C_25) , then k equals:

if sum_(r=0)^(25).^(50)C_(r)(.^(50-r)C_(25-r))=k(.^(50)C_25) , then k equals: (a) 2^(25) (b) 2^(25)-1 (c) 2^(24) (d) 25^(2)

If sum_(r=0)^(n){("^(n)C_(r-1))/('^(n)C_(r )+^(n)C_(r-1))}^(3)=(25)/(24) , then n is equal to (a) 3 (b) 4 (c) 5 (d) 6

Prove that Sigma_(r=0)^(n) ""^(n)C_(r).3^(r)=4^(n)

The vaule of sum_(r=0)^(n-1) (""^(C_(r))/(""^(n)C_(r) + ""^(n)C_(r +1)) is equal to

Prove that Sigma_(r=0)^(n) 3^(r)""^(n)C_(r)=4^(n)

If Sigma_(r=1)^(10) r(r-1) ""^(10)C_r = k. 2^9

Prove that Sigma_(r=1) ""^(n)C_(r).3^(r)=4^(n)

If n in N, then sum_(r=0)^(n) (-1)^(n) (""^(n)C_(r))/(""^(r+2)C_(r)) is equal to .

The value of sum_(r=0)^(3) ""^(8)C_(r)(""^(5)C_(r+1)-""^(4)C_(r)) is "_____" .

CENGAGE ENGLISH-JEE 2019-MCQ
  1. If the third term in expansion of (1+x^(log2x))^5 is 2560 then x is eq...

    Text Solution

    |

  2. The positive value of lambda for which the coefficient of x^(2) in the...

    Text Solution

    |

  3. If Sigma(r=0)^(25) (""^(50)C(r)""^(50-r)C(25-r))=K(""^(50)C(25)), th...

    Text Solution

    |

  4. If the middle term of the expansion of (x^3/3+3/x)^8 is 5670 then sum ...

    Text Solution

    |

  5. The value of r for which .^(20)C(r ), .^(20)C(r - 1) .^(20)C(1) + .^...

    Text Solution

    |

  6. Let (x+10)^(50)+(x-10)^(50)=a(0)+a(1)x+a(2)x^(2)+...+a(50)x^(50) for a...

    Text Solution

    |

  7. Let Sn=1+q+q^2 +...+q^n and Tn =1+((q+1)/2)+((q+1)/2)^2+...((q+1)/2)^n...

    Text Solution

    |

  8. Ratio of the 5^(th) term from the beginning to the 5^(th) term from th...

    Text Solution

    |

  9. If ""^(n)C(4),""^(n)C(5) and ""^(n)C(6) are in A.P. then the value of ...

    Text Solution

    |

  10. Number of irrational terms in expansion of (2^(1/5) + 3^(1/10))^60 is

    Text Solution

    |

  11. Two integers are selected at random from the set {1, 2, …, 11}. Given ...

    Text Solution

    |

  12. Let S={1,2,...,20} A subset B of S is said to be "nice", if the sum of...

    Text Solution

    |

  13. In a class of 60 students, 40 opted for NCC, 30 opted for NSS and 20 o...

    Text Solution

    |

  14. In a game, a man wins Rs 100 if he gets 5 or 6 on a throw of a fair di...

    Text Solution

    |

  15. If the Boolean expression (p oplusq)wedge (~p Theta q) is equivalent t...

    Text Solution

    |

  16. The logical statement [~(~pvvq)vv(p^^r)]^^(~q^^r) is equivalent to (a)...

    Text Solution

    |

  17. Given three statements P: 5 is a prime number, Q:7 is a factor of 192,...

    Text Solution

    |

  18. If q is false and (p^^q)harr r is also true then which of the followin...

    Text Solution

    |

  19. The Boolean expression ~(pvvq)vv(~p^^q) is equivalent to (1) ~p (2) p ...

    Text Solution

    |

  20. (~pvv~q) is logically equivalent to

    Text Solution

    |