Home
Class 12
MATHS
Let f(x) be a differentiable function sy...

Let `f(x)` be a differentiable function symmetric about `x=2`, then the value of `int_(0)^(4)cos(pix)f'(x)dx` is equal to________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral: \[ I = \int_{0}^{4} \cos(\pi x) f'(x) \, dx \] where \( f(x) \) is a differentiable function symmetric about \( x = 2 \). ### Step 1: Understand the symmetry of the function Since \( f(x) \) is symmetric about \( x = 2 \), we have: \[ f(2 - x) = f(2 + x) \] This implies that: \[ f(4 - x) = f(x) \] ### Step 2: Differentiate the symmetry condition Differentiating both sides with respect to \( x \): \[ f'(2 - x) \cdot (-1) = f'(2 + x) \cdot 1 \] Thus, we can rewrite this as: \[ f'(2 - x) = -f'(2 + x) \] This means: \[ f'(4 - x) = -f'(x) \] ### Step 3: Change of variable in the integral Now, we can use the property of definite integrals: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] In our case, let \( a = 4 \): \[ I = \int_{0}^{4} \cos(\pi (4 - x)) f'(4 - x) \, dx \] This simplifies to: \[ I = \int_{0}^{4} \cos(4\pi - \pi x) f'(4 - x) \, dx \] ### Step 4: Simplify the cosine term Using the cosine identity \( \cos(4\pi - \theta) = \cos(\theta) \): \[ I = \int_{0}^{4} \cos(\pi x) f'(4 - x) \, dx \] ### Step 5: Substitute the expression for \( f'(4 - x) \) From our earlier result, we know: \[ f'(4 - x) = -f'(x) \] Thus, we can substitute this into our integral: \[ I = \int_{0}^{4} \cos(\pi x) (-f'(x)) \, dx = -\int_{0}^{4} \cos(\pi x) f'(x) \, dx \] This gives us: \[ I = -I \] ### Step 6: Solve for \( I \) Adding \( I \) to both sides: \[ I + I = 0 \implies 2I = 0 \implies I = 0 \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{4} \cos(\pi x) f'(x) \, dx = 0 \]

To solve the problem, we need to evaluate the integral: \[ I = \int_{0}^{4} \cos(\pi x) f'(x) \, dx \] where \( f(x) \) is a differentiable function symmetric about \( x = 2 \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE MAIN|12 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a differentiable function in the interval (0, 2) then the value of int_(0)^(2)f(x)dx

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f : R to R be a differentiable function and f(1) = 4 . Then, the value of lim_(x to 1)int_(4)^(f(x))(2t)/(x-1)dt is :

Let f:R to R be a differentiable function such that f(2)=2 . Then, the value of lim_(xrarr2) int_(2)^(f(x))(4t^3)/(x-2) dt , is

Let f(x) be a twice-differentiable function and f''(0)=2. Then evaluate lim_(xto0) (2f(x)-3f(2x)+f(4x))/(x^(2)).

Let y=f(x)=4x^(3)+2x-6 , then the value of int_(0)^(2)f(x)dx+int_(0)^(30)f^(-1)(y)dy is equal to _________.

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

Let f(x) be a twice-differentiable function and f"(0)=2. The evaluate: ("lim")_(xvec0)(2f(x)-3f(2x)+f(4x))/(x^2)

If the function f(x) is symmetric about the line x=3 , then the value of the integral I=int_(-2)^(8)(f(x))/(f(x)+f(6-x))dx is

Let f(x) be a differentiable function such that int_(t)^(t^(2))xf(x)dx=(4)/(3)t^(3)-(4t)/(3)AA t ge0 , then f(1) is equal to

CENGAGE ENGLISH-DEFINITE INTEGRATION -NUMERICAL VALUE_TYPE
  1. L e tf(x)=x^3=(3x^2)/2+x+1/4 Then the value of (int(1/4)^(3/4)f(f(x))...

    Text Solution

    |

  2. The value of int(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2)))dx is.

    Text Solution

    |

  3. Let f(x) be a differentiable function symmetric about x=2, then the va...

    Text Solution

    |

  4. Let f:[0,oo)->R be a continuous strictly increasing function, such tha...

    Text Solution

    |

  5. If f is continuous function and F(x)=int0^x((2t+3). intt^2 f(u)du)\ dt...

    Text Solution

    |

  6. If the value of the definite integral int0^1(sin^(-1)sqrt(x))/(x^2-x+1...

    Text Solution

    |

  7. Let f(x)=int(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x...

    Text Solution

    |

  8. Let g(x) be differentiable on R and int(sint)^1x^2g(x)dx=(1-sint), wh...

    Text Solution

    |

  9. If int0^oo x^(2n+1)\ e^(-x^2)\ dx=360, then the value of n is

    Text Solution

    |

  10. Let f(x) be a derivable function satisfying f(x)=int0^x e^t sin(x-t) ...

    Text Solution

    |

  11. Let f(x)=1/x^2 int4^x (4t^2-2f'(t))dt then find 9f'(4)

    Text Solution

    |

  12. If the value of the definite integral int0^1^(2007)C7x^(2000)dot(1-x)^...

    Text Solution

    |

  13. IfIn=int0^1(1-x^5)^n dx ,t h e n(55)/7(I(10))/(I(11)) is equal to

    Text Solution

    |

  14. Evaluate: 5050(int0 1(1-x^(50))^(100)dx)/(int0 1(1-x^(50))^(101)dx)

    Text Solution

    |

  15. L e tJ=int(-5)^(-4)(3-x^2)tan(3-x^2)dx and K=int(-2)^(-1)(6-6x+x^2) t...

    Text Solution

    |

  16. The value of the definite integral int(2-1)^(sqrt(2)+1)(x^4+x^2+2)/((x...

    Text Solution

    |

  17. Consider a real valued continuous function f such that f(x)=sinx + int...

    Text Solution

    |

  18. If f(x)=x+int0^1t(x+t)f(t)dt ,then the value of 23/2f(0) is equal...

    Text Solution

    |

  19. Let y=f(x)=4x^(3)+2x-6, then the value of int(0)^(2)f(x)dx+int(0)^(30)...

    Text Solution

    |

  20. The value of int(1)^(3)(sqrt(1+(x-1)^(3))+(x^(2)-1)^(1/3)+1)dx is .

    Text Solution

    |