Home
Class 12
MATHS
If a, b, and c are integers, then number...

If a, b, and c are integers, then number of matrices `A=[(a,b,c),(b,c,a),(c,a,b)]` which are possible such that `A A^(T)=I` is _______.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the number of integer matrices \( A = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix} \) such that \( A A^T = I \), where \( I \) is the identity matrix. ### Step-by-Step Solution: 1. **Write down the equation**: We need to compute \( A A^T \) and set it equal to the identity matrix \( I \). \[ A = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix} \] \[ A^T = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix} \] 2. **Calculate \( A A^T \)**: We perform the multiplication of \( A \) and \( A^T \): \[ A A^T = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix} \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix} \] The elements of the resulting matrix are calculated as follows: - First element (1,1): \[ a^2 + b^2 + c^2 \] - Second element (1,2): \[ ab + bc + ca \] - Third element (1,3): \[ ac + ba + cb \] - The same calculations apply for the other rows. This results in the matrix: \[ A A^T = \begin{pmatrix} a^2 + b^2 + c^2 & ab + bc + ca & ac + ba + cb \\ ab + bc + ca & b^2 + c^2 + a^2 & ba + cb + ac \\ ac + ba + cb & ba + cb + ac & c^2 + a^2 + b^2 \end{pmatrix} \] 3. **Set \( A A^T = I \)**: We need: \[ A A^T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] This gives us the following equations: - \( a^2 + b^2 + c^2 = 1 \) (1) - \( ab + bc + ca = 0 \) (2) 4. **Analyze the equations**: From equation (1), since \( a, b, c \) are integers, the possible values for \( a^2, b^2, c^2 \) can only be \( 0 \) or \( 1 \). Therefore, the possible combinations of \( (a, b, c) \) are: - One of \( a, b, c \) is \( \pm 1 \) and the others are \( 0 \). 5. **List the cases**: - Case 1: \( a = \pm 1, b = 0, c = 0 \) → Matrices: \( \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix} \) - Case 2: \( a = 0, b = \pm 1, c = 0 \) → Matrices: \( \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \) - Case 3: \( a = 0, b = 0, c = \pm 1 \) → Matrices: \( \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix} \) 6. **Count the valid matrices**: Each case gives us 2 matrices, hence: \[ \text{Total matrices} = 2 + 2 + 2 = 6 \] ### Final Answer: The number of matrices \( A \) such that \( A A^T = I \) is **6**.

To solve the problem, we need to find the number of integer matrices \( A = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix} \) such that \( A A^T = I \), where \( I \) is the identity matrix. ### Step-by-Step Solution: 1. **Write down the equation**: We need to compute \( A A^T \) and set it equal to the identity matrix \( I \). \[ ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Archives (Single correct Answer type)|11 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise JEE Advanced (Single Correct Answer Type)|5 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Matrix Type|5 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If a, b and c are consecutive integers, what is a+b+c ?

The value of |(a-b,b+c,a),(b-a,c+a,b),(c-a,a+b,c)| is

If a, b and c are distinct positive numbers, then the expression (a + b - c)(b+ c- a)(c+ a -b)- abc is:

If a, b and c are distinct positive numbers, then the expression (a + b - c)(b+ c- a)(c+ a -b)- abc is:

Let a,b,c be positive real numbers with abc=1 let A =[{:(a,b,c),(b,c,a),(c,a,b):}] if A ^(T) A =I where A^(T) is the transpose of A and I is the identity matrix , then determine the value of a^(2) +b^(2)+c^(2)

If a,b and c are integers and age1,bge2 and c ge 3 . If a+b+c=15 , the number of possible solutions of the equation is

Let S be the set of 2xx2 matrices given by S={A=[[a,b],[c,d]],"where" a,b,c,d,in I} , such that A^(T)=A^(-1) Then

If a,b,c are three positive real numbers then the minimum value of the expression (b+c)/a+(c+a)/b+(a+b)/c is

If a,b, and c are positive integers such that a+b+c le8 , the number of possible values of the ordered triplet (a,b,c) is

If matrix A =[{:( a,b,c),(b,c,a),(c,a,b) :}] where a,b,c are real positive number ,abc =1 and A^(T) A = I then Which of the following is/are true

CENGAGE ENGLISH-MATRICES-Numerical Value Type
  1. Let A be the set of all 3xx3 skew-symmetri matrices whose entries are ...

    Text Solution

    |

  2. Let A=[a("ij")](3xx3) be a matrix such that A A^(T)=4I and a("ij")+2c(...

    Text Solution

    |

  3. Let S be the set which contains all possible vaues fo I ,m ,n ,p ,q ,r...

    Text Solution

    |

  4. If A is a diagonal matrix of order 3xx3 is commutative with every squa...

    Text Solution

    |

  5. If A is a square matrix of order 3 such that |A|=2,t h e n|(a d jA^(-1...

    Text Solution

    |

  6. If A and B are two matrices of order 3 such that AB=O and A^(2)+B=I, t...

    Text Solution

    |

  7. If a, b, and c are integers, then number of matrices A=[(a,b,c),(b,c,a...

    Text Solution

    |

  8. Let A=[a("ij")] be 3xx3 matrix and B=[b("ij")] be 3xx3 matrix such tha...

    Text Solution

    |

  9. A square matrix M of order 3 satisfies M^(2)=I-M, where I is an identi...

    Text Solution

    |

  10. Let A=[a("ij")](3xx3), B=[b("ij")](3xx3) and C=[c("ij")](3xx3) be any ...

    Text Solution

    |

  11. If A is a square matrix of order 2xx2 such that |A|=27, then sum of th...

    Text Solution

    |

  12. If A is a aquare matrix of order 2 and det. A=10, then ((tr. A)^(2)-tr...

    Text Solution

    |

  13. Let A and B are two square matrices of order 3 such that det. (A)=3 an...

    Text Solution

    |

  14. Let P, Q and R be invertible matrices of order 3 such A=PQ^(-1), B=QR^...

    Text Solution

    |

  15. If A=[(1,x,3),(1,3,3),(2,4,4)] is the adjoint of a 3xx3 matrix B and d...

    Text Solution

    |

  16. A, B and C are three square matrices of order 3 such that A= diag (x, ...

    Text Solution

    |

  17. Let A=[a("ij")] be a matrix of order 2 where a("ij") in {-1, 0, 1} and...

    Text Solution

    |

  18. Let K be a positive real number and A=[2k-1 2sqrt(k)2sqrt(k)2sqrt(k)1-...

    Text Solution

    |

  19. Let M be a 3xx3 matrix satisfying M[0 1 0]=[-1 2 3] ,M[1-1 0]=[1 1-1],...

    Text Solution

    |

  20. let z= (-1+sqrt(3i))/2, where i=sqrt(-1) and r,s epsilon P1,2,3}. Let ...

    Text Solution

    |