Home
Class 12
MATHS
If f(x) = sin^(-1) (sin ("log"(2) x)), t...

If `f(x) = sin^(-1) (sin ("log"_(2) x))`, then find the value of `f(300)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f(300) \) where \( f(x) = \sin^{-1}(\sin(\log_2 x)) \). ### Step 1: Substitute \( x = 300 \) We start by substituting \( x \) with \( 300 \) in the function: \[ f(300) = \sin^{-1}(\sin(\log_2 300)) \] ### Step 2: Calculate \( \log_2 300 \) Next, we need to calculate \( \log_2 300 \). We can use the change of base formula: \[ \log_2 300 = \frac{\log_{10} 300}{\log_{10} 2} \] Using approximate values, we find: \[ \log_{10} 300 \approx 2.4771 \quad \text{and} \quad \log_{10} 2 \approx 0.3010 \] Thus, \[ \log_2 300 \approx \frac{2.4771}{0.3010} \approx 8.22 \] ### Step 3: Determine the range of \( \log_2 300 \) Since \( \log_2 256 = 8 \) and \( \log_2 512 = 9 \), we have: \[ 8 < \log_2 300 < 9 \] ### Step 4: Use the property of \( \sin^{-1}(\sin x) \) The function \( \sin^{-1}(\sin x) \) returns \( x \) if \( x \) is within the range \( [-\frac{\pi}{2}, \frac{\pi}{2}] \). However, since \( 8.22 \) is outside this range, we need to adjust it. ### Step 5: Adjust \( \log_2 300 \) to fit within the range To adjust \( \log_2 300 \) into the range of \( \sin^{-1} \), we can use the periodic property of the sine function: \[ \sin(x) = \sin(\pi - x) \] Thus, we can write: \[ \sin(\log_2 300) = \sin(\pi - \log_2 300) \] This gives us: \[ f(300) = \sin^{-1}(\sin(\pi - \log_2 300)) = \pi - \log_2 300 \] ### Step 6: Final calculation Now we can substitute back the value of \( \log_2 300 \): \[ f(300) = \pi - 8.22 \] ### Conclusion Thus, the value of \( f(300) \) is: \[ f(300) \approx \pi - 8.22 \]

To solve the problem, we need to find the value of \( f(300) \) where \( f(x) = \sin^{-1}(\sin(\log_2 x)) \). ### Step 1: Substitute \( x = 300 \) We start by substituting \( x \) with \( 300 \) in the function: \[ f(300) = \sin^{-1}(\sin(\log_2 300)) \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.3|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.4|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.1|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If f(x)=sin^(-1)((2x)/(1+x^(2))), then Statement I The value of f(2)=sin^(-1)((4)/(5)) . Statement II f(x)=sin^(-1)((2x)/(1+x^(2)))=-2, for xlt1

f(x)=sqrt(sin^(- 1)(log_2x)) Find the domain

If f(x) = x^11 + sin^3(35x) + 111x , then the value of f^(-1)(sin (pi/5)) +f^(-1)(sin (6pi/5)) + f^(-1)((sin pi/7)) + f^(-1)(sin (8pi/7)) is :

If f(x)=sin^(-1)(3x-4x^(3)). Then answer the following The value of f'((1)/(sqrt2)) , is

If f(x+ y) = f(x) + f(y) for x, y in R and f(1) = 1 , then find the value of lim_(x->0)(2^(f(tan x)-2^f(sin x)))/(x^2*f(sin x))

"Let "f(x)=((2^(x)+2^(-x))sin x sqrt(tan^(-1)(x^(2)-x+1)))/((7x^(2)+3x+1)^(3)) . Then find the value of f'(0).

If f'(x)=sin(log x)and y=f((2x+3)/(3-2x)), then dy/dx equals

"Let "f(x)=|{:(cos(x+x^(2)),sin (x+x^(2)),-cos(x+x^(2))),(sin (x-x^(2)),cos (x-x^(2)),sin (x-x^(2))),(sin 2x, 0, sin (2x^(2))):}|. Find the value of f'(0).

"Let "f(x)=|{:(cos(x+x^(2)),sin (x+x^(2)),-cos(x+x^(2))),(sin (x-x^(2)),cos (x-x^(2)),sin (x-x^(2))),(sin 2x, 0, sin (2x^(2))):}|. Find the value of f'(0).

If f(x)=sin(3x)/sin x,x!=npi , then the range of values of f(x) for real values of x is