Home
Class 12
MATHS
[vecaxx vecb " " vecc xx vecd " " vecex...

`[vecaxx vecb " " vecc xx vecd " " vecexx vecf]` is equal to
(a)`[veca vecb vecd] [vecc vece vecf]-[veca vecb vecc] [vecd vece vecf]`
(b)`[veca vecb vece ] [vecf vecc vecd] - [veca vecb vecf] [vece vecc vecd] `
(c)`[vecc vecd veca] [vecb vece vecf] - [veca vecd vecb] [vecavece vecf]`
(d)`[veca vecc vece] [vecb vecd vecf]`

A

`[veca vecb vecd] [vecc vece vecf]-[veca vecb vecc] [vecd vece vecf]`

B

`[veca vecb vece ] [vecf vecc vecd] - [veca vecb vecf] [vece vecc vecd] `

C

`[vecc vecd veca] [vecb vece vecf] - [veca vecd vecb] [vecavece vecf]`

D

`[veca vecc vece] [vecb vecd vecf]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \([ \vec{a} \times \vec{b} \; \vec{c} \times \vec{d} \; \vec{e} \times \vec{f} ]\) and determine which of the given options is equivalent to it. ### Step-by-Step Solution: 1. **Understanding the Scalar Triple Product**: The expression \([ \vec{a} \times \vec{b} \; \vec{c} \times \vec{d} \; \vec{e} \times \vec{f} ]\) represents the scalar triple product of the vectors involved. The scalar triple product can be expressed as: \[ \vec{a} \times \vec{b} \cdot (\vec{c} \times \vec{d} \times \vec{e} \times \vec{f}) \] 2. **Using the Properties of Cross and Dot Products**: We can rewrite the expression using the properties of cross and dot products. The scalar triple product has the property that: \[ \vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w}) \vec{v} - (\vec{u} \cdot \vec{v}) \vec{w} \] Applying this property, we can express \((\vec{c} \times \vec{d}) \times \vec{e}\) and \((\vec{c} \times \vec{d}) \times \vec{f}\). 3. **Expanding the Expression**: We can expand the expression as follows: \[ [\vec{a} \times \vec{b}] \cdot [(\vec{c} \times \vec{d}) \times \vec{e} \times \vec{f}] = [\vec{a} \times \vec{b}] \cdot [\vec{c} \times \vec{d} \times \vec{e} - \vec{c} \times \vec{f}] \] 4. **Identifying the Correct Option**: Now, we will analyze the options provided: - Option (a): \([ \vec{a} \vec{b} \vec{d} ] [ \vec{c} \vec{e} \vec{f}] - [ \vec{a} \vec{b} \vec{c} ] [ \vec{d} \vec{e} \vec{f}] \) - Option (b): \([ \vec{a} \vec{b} \vec{e} ] [ \vec{f} \vec{c} \vec{d}] - [ \vec{a} \vec{b} \vec{f} ] [ \vec{e} \vec{c} \vec{d}] \) - Option (c): \([ \vec{c} \vec{d} \vec{a} ] [ \vec{b} \vec{e} \vec{f}] - [ \vec{a} \vec{d} \vec{b} ] [ \vec{a} \vec{e} \vec{f}] \) - Option (d): \([ \vec{a} \vec{c} \vec{e} ] [ \vec{b} \vec{d} \vec{f}] \) After analyzing the options, we find that option (b) matches the expanded expression we derived. 5. **Conclusion**: Therefore, the correct answer is: \[ \text{(b) } [ \vec{a} \vec{b} \vec{e} ] [ \vec{f} \vec{c} \vec{d}] - [ \vec{a} \vec{b} \vec{f} ] [ \vec{e} \vec{c} \vec{d}] \]

To solve the problem, we need to evaluate the expression \([ \vec{a} \times \vec{b} \; \vec{c} \times \vec{d} \; \vec{e} \times \vec{f} ]\) and determine which of the given options is equivalent to it. ### Step-by-Step Solution: 1. **Understanding the Scalar Triple Product**: The expression \([ \vec{a} \times \vec{b} \; \vec{c} \times \vec{d} \; \vec{e} \times \vec{f} ]\) represents the scalar triple product of the vectors involved. The scalar triple product can be expressed as: \[ \vec{a} \times \vec{b} \cdot (\vec{c} \times \vec{d} \times \vec{e} \times \vec{f}) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

If vecA=(vecbxxvecc)/([vecb vecc veca]), vecB=(veccxxveca)/([vecc veca vecb]), vecC=(vecaxxvecb)/([veca vecb vecc]) find [vecA vecB vecC]

For any four vectors, prove that ( veca × vecb )×( vecc × vecd )=[ veca vecc vecd ] vecb −[ vecb vecc vecd ] veca

If veca,vecb,vecc are unity vectors such that vecd=lamdaveca+muvecb+gammavecc then lambda is equal to (A) ([veca vecb vecc])/([vecb veca vecc]) (B) ([vecb vecc vecd])/([vecb vecc veca]) (C) ([vecb vecd vecc])/([veca vecb vecc]) (D) ([vecc vecb vecd])/([veca vecb vecc])

Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=[veca vecb vecc](veca.vecd)

Show that the points whose position vectors are veca,vecb,vecc,vecd will be coplanar if [veca vecb vecc]-[veca vecb vecd]+[veca vecc vecd]-[vecb vecc vecd]=0

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. if side vec(AB) of an equilateral triangle ABC lying in the x-y plane ...

    Text Solution

    |

  2. The angles of a triangle , two of whose sides are respresented by vect...

    Text Solution

    |

  3. veca ,vecb and vecc are unimodular and coplanar. A unit vector vecd is...

    Text Solution

    |

  4. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |

  5. Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(vec...

    Text Solution

    |

  6. if veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0 ...

    Text Solution

    |

  7. Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a ...

    Text Solution

    |

  8. If veca, vecb and vecc are three unit vectors such that veca xx (vecb ...

    Text Solution

    |

  9. If in triangle ABC, vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (...

    Text Solution

    |

  10. [vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to (a)[veca...

    Text Solution

    |

  11. The scalars l and m such that lveca + m vecb =vecc, " where " veca, ve...

    Text Solution

    |

  12. If (veca xx vecb) xx (vecc xx vecd) . (veca xx vecd) =0 then which of ...

    Text Solution

    |

  13. A,B C and dD are four points such that vec (AB) = m(2 hati - 6 hatj +...

    Text Solution

    |

  14. If the vectors veca, vecb, vecc are non -coplanar and l,m,n are distin...

    Text Solution

    |

  15. Let vec(alpha)=ahati+bhatj+chatk, vec(beta)=bhati+chatj+ahatk and vec(...

    Text Solution

    |

  16. If vectors vecA=2hati+3hatj+4hatk, vecB=hati+hatj+5hatk and vecC form ...

    Text Solution

    |

  17. If veca=xhati + y hatj + zhatk, vecb= yhati + zhatj + xhatk and vecc=...

    Text Solution

    |

  18. If veca xx (vecbxx vecc)= (veca xx vecb)xxvecc then

    Text Solution

    |

  19. A vector (vecd) is equally inclined to three vectors veca= hati - hatj...

    Text Solution

    |

  20. A parallelogram is constructed on the vectors veca=3vecalpha-vecbeta, ...

    Text Solution

    |