Home
Class 12
MATHS
"If "log(e)(log(e) x-log(e)y)=e^(x^(2(y)...

`"If "log_(e)(log_(e) x-log_(e)y)=e^(x^(2_(y)))(1-log_(e)x)," then find the value of "y'(e).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_e(\log_e x - \log_e y) = e^{x^2 y}(1 - \log_e x) \) and find the value of \( y'(e) \), we will follow these steps: ### Step 1: Substitute \( x = e \) We start by substituting \( x = e \) into the equation. \[ \log_e(\log_e e - \log_e y) = e^{e^2 y}(1 - \log_e e) \] ### Step 2: Simplify the equation Since \( \log_e e = 1 \), we can simplify the equation: \[ \log_e(1 - \log_e y) = e^{e^2 y}(1 - 1) \] This simplifies to: \[ \log_e(1 - \log_e y) = 0 \] ### Step 3: Solve for \( y \) From \( \log_e(1 - \log_e y) = 0 \), we can exponentiate both sides: \[ 1 - \log_e y = e^0 = 1 \] This leads to: \[ \log_e y = 0 \] Thus, we find: \[ y = e^0 = 1 \] ### Step 4: Differentiate the original equation Next, we differentiate the original equation with respect to \( x \): \[ \frac{1}{\log_e x - \log_e y} \left( \frac{1}{x} - \frac{1}{y} \frac{dy}{dx} \right) = e^{x^2 y} \left( 2xy + x^2 \frac{dy}{dx} \right) (1 - \log_e x) \] ### Step 5: Substitute \( x = e \) and \( y = 1 \) Now we substitute \( x = e \) and \( y = 1 \): \[ \frac{1}{1 - 0} \left( \frac{1}{e} - \frac{1}{1} \frac{dy}{dx} \right) = e^{e^2 \cdot 1} \left( 2e \cdot 1 + e^2 \frac{dy}{dx} \right) (1 - 1) \] The right side becomes zero: \[ \frac{1}{e} - \frac{dy}{dx} = 0 \] ### Step 6: Solve for \( \frac{dy}{dx} \) From the equation \( \frac{1}{e} - \frac{dy}{dx} = 0 \), we can solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1}{e} \] ### Step 7: Find \( y'(e) \) Thus, the value of \( y'(e) \) is: \[ y'(e) = \frac{1}{e} \] ### Final Answer The value of \( y'(e) \) is \( \frac{1}{e} \). ---

To solve the equation \( \log_e(\log_e x - \log_e y) = e^{x^2 y}(1 - \log_e x) \) and find the value of \( y'(e) \), we will follow these steps: ### Step 1: Substitute \( x = e \) We start by substituting \( x = e \) into the equation. \[ \log_e(\log_e e - \log_e y) = e^{e^2 y}(1 - \log_e e) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.5|16 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.2|40 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=e^(1+log_(e)x) , then the value of (dy)/(dx) is equal to

if y=(xsinx)/(log_(e)x), then find (dy)/(dx)

If y=x^(3)log_(e)x, then find y'' andy'''.

If f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))} , then f'( e )

f(x)=log_(e)abs(log_(e)x) . Find the domain of f(x).

y=(log_(e)x)^(sinx)

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is

int (dx)/(x(1+log_(e)x)(3+log_(e)x))

Draw the graph of y=log_(e)(-x),-log_(e)x,y=|log_(e)x|,y=log_(e)|x| and y=|log_(e)|x|| transforming the graph of y=log_(e)x.

Solve log_(e)(x-a)+log_(e)x=1.(a>0)