Home
Class 12
MATHS
i. If veca, vecb and vecc are non-coplan...

i. If `veca, vecb and vecc` are non-coplanar vectors, prove that vectors `3veca-7vecb-4vecc, 3veca-2vecb+vecc and veca+vecb+2vecc` are coplanar.

Text Solution

Verified by Experts

Given `[veca vecb vecc] ne 0 as veca, vecb, vecc` are non- coplanar. Also there does not exist any linear relation between them because if any such relation extists, then they would be coplanar.
`Let " " A=x(vecbxxvecc)+y(vecc xxveca) + z (vecaxxvecb),`
`where " " x=veca.vecd,y=vecb.vecd,x =vecc.vecd`
we have to find value of modulus of `vecA i.e. |vecA|` which is independent of `vecd`.
Multiplying both sides scalarly by ` veca,vecb and vecc`. and knowing that scalar triple product is zero when two vectors are equal, we get
`vecA.veca=x[vecavecbvecc]+0`
putting for x, we get
`(veca.vecd)[vecavecb vecc]=vecA.veca`
similarly , we have
`(vecb.vecd)[vecavecbvecc]=vecA.vecb`
`(vecc.vecd)[veca vecbvecc]=vecA.vecc`
Adding the above relations , we get
`[(veca+vecb+vecc).vecd][vecavecbvecc]=vecA.(veca+vecb+vecc)`
`(veca+vecb+vecc).[vecd[veca vecbvecc]-A vecA=0`
since `veca vecb and vecc` are non-coplanar, `veca+vecb+vecc ne 0` because otherwise any one is expressible as a linear combination of other two, Hence,
`[veca vecbvecc] vecd=vecA`
`|vecA|=|[vecavecbvecc]|as vecd` is a unit vector.
It is independent of `vecd`.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

i. If vec a , vec b a n d vec c are non-coplanar vectors, prove that vectors 3veca -7vecb -4 vecc ,3 veca -2vecb + vecc and veca + vecb +2 vecc are coplanar.

If veca, vecb and vecc are non-coplanar vectors, prove that the four points 2veca+3vecb-vecc, veca-2vecb+3vecc, 3veca+4vecb-2vecc and veca-6vecb+ 6 vecc are coplanar.

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,12vecc-23veca)]

If veca, vecb, vecc are non-coplanar vectors, prove that the following vectors are coplanar. (i) 3veca - 7vecb - 4vecc, 3veca - 2vecb + vecc, veca + vecb + 2vecc (ii) 5veca +6vecb + 7vecc, 7veca - 8vecb + 9vecc, 3veca + 20 vecb + 5vecc

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca,vecb and vecc are non coplaner vectors such that vecbxxvecc=veca , veccxxveca=vecb and vecaxxvecb=vecc then |veca+vecb+vecc| =

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

For any three vectors veca,vecb,vecc show that (veca-vecb),(vecb-vecc) (vecc-veca) are coplanar.