Home
Class 11
MATHS
Let PQR be a triangle . Let veca=overlin...

Let `PQR` be a triangle . Let `veca=overline(QR),vecb = overline(RP) and vecc= overline(PQ).if |veca|=12, |vecb|=4sqrt3and vecb.vecc= 24` then which of the following is (are) true ?

A

(a) `|vecc|^(2)/2-|veca|=12`

B

(b) `|vecc|^(2)/2-|veca|=30`

C

(c) `|vecaxxvecb + veccxxveca|= 48sqrt3`

D

(d) `veca.vecb=-72`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will analyze the triangle \( PQR \) and the vectors associated with its sides. We have: - \( \vec{a} = \overline{QR} \) with magnitude \( |\vec{a}| = 12 \) - \( \vec{b} = \overline{RP} \) with magnitude \( |\vec{b}| = 4\sqrt{3} \) - \( \vec{c} = \overline{PQ} \) with the condition \( \vec{b} \cdot \vec{c} = 24 \) We need to determine which of the given options are true based on these vectors. ### Step 1: Use the Law of Cosines From the triangle, we can apply the law of cosines. We know that: \[ |\vec{a}|^2 = |\vec{b}|^2 + |\vec{c}|^2 - 2 |\vec{b}| |\vec{c}| \cos \theta \] Where \( \theta \) is the angle opposite side \( \vec{a} \). ### Step 2: Substitute the Known Values Substituting the known magnitudes into the equation: \[ 12^2 = (4\sqrt{3})^2 + |\vec{c}|^2 - 2 (4\sqrt{3}) |\vec{c}| \cos \theta \] Calculating \( 12^2 \) and \( (4\sqrt{3})^2 \): \[ 144 = 48 + |\vec{c}|^2 - 8\sqrt{3} |\vec{c}| \cos \theta \] ### Step 3: Rearranging the Equation Rearranging gives: \[ |\vec{c}|^2 - 8\sqrt{3} |\vec{c}| \cos \theta + 48 - 144 = 0 \] This simplifies to: \[ |\vec{c}|^2 - 8\sqrt{3} |\vec{c}| \cos \theta - 96 = 0 \] ### Step 4: Use the Dot Product Condition We also know from the problem that: \[ \vec{b} \cdot \vec{c} = |\vec{b}| |\vec{c}| \cos \phi = 24 \] Where \( \phi \) is the angle between \( \vec{b} \) and \( \vec{c} \). Substituting \( |\vec{b}| \): \[ (4\sqrt{3}) |\vec{c}| \cos \phi = 24 \] This gives: \[ |\vec{c}| \cos \phi = \frac{24}{4\sqrt{3}} = 2\sqrt{3} \] ### Step 5: Solve for \( |\vec{c}| \) Now we can substitute \( |\vec{c}| \cos \phi \) back into our earlier equation. We can express \( \cos \theta \) in terms of \( \phi \) using the relationship between angles in a triangle: \[ \cos \theta = -\cos \phi \] Substituting \( \cos \phi \): \[ |\vec{c}|^2 + 8\sqrt{3} |\vec{c}| \cdot 2\sqrt{3} - 96 = 0 \] ### Step 6: Solve the Quadratic Equation This is a quadratic equation in terms of \( |\vec{c}| \): \[ |\vec{c}|^2 + 48 |\vec{c}| - 96 = 0 \] Using the quadratic formula: \[ |\vec{c}| = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-48 \pm \sqrt{48^2 + 4 \cdot 96}}{2} \] Calculating the discriminant: \[ 48^2 + 384 = 2304 + 384 = 2688 \] Thus: \[ |\vec{c}| = \frac{-48 \pm \sqrt{2688}}{2} \] Calculating \( \sqrt{2688} \): \[ \sqrt{2688} = 52 \] So: \[ |\vec{c}| = \frac{-48 \pm 52}{2} \] This gives two solutions: 1. \( |\vec{c}| = 2 \) 2. \( |\vec{c}| = -50 \) (not valid) ### Conclusion Thus, we find \( |\vec{c}| = 2 \).

To solve the problem, we will analyze the triangle \( PQR \) and the vectors associated with its sides. We have: - \( \vec{a} = \overline{QR} \) with magnitude \( |\vec{a}| = 12 \) - \( \vec{b} = \overline{RP} \) with magnitude \( |\vec{b}| = 4\sqrt{3} \) - \( \vec{c} = \overline{PQ} \) with the condition \( \vec{b} \cdot \vec{c} = 24 \) We need to determine which of the given options are true based on these vectors. ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise single correct answer type|28 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Let vecC=vecA+vecB

Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0 . Which of the following is correct?

Let veca and vecb are vectors such that |veca|=2, |vecb|=3 and veca. vecb=4 . If vecc=(3veca xx vecb)-4vecb , then |vecc| is equal to

Let veca , vecb,vecc be three vectors such that veca bot ( vecb + vecc), vecb bot ( vecc + veca) and vecc bot ( veca + vecb) , " if " |veca| =1 , |vecb| =2 , |vecc| =3 , " then " | veca + vecb + vecc| is,

Let veca vecb and vecc be pairwise mutually perpendicular vectors, such that |veca|=1, |vecb|=2, |vecc| = 2 , the find the length of veca +vecb + vecc .

Let veca vecb and vecc be pairwise mutually perpendicular vectors, such that |veca|=1, |vecb|=2, |vecc| = 2 , the find the length of veca +vecb + vecc .

If veca, vecb and vecc are such that [veca \ vecb \ vecc] =1, vecc= lambda (veca xx vecb) , angle between vecc and vecb is 2pi//3 , |veca|=sqrt2, |vecb|=sqrt3 and |vecc|=1/sqrt3 then the angle between veca and vecb is

Let veclamda=veca times (vecb +vecc), vecmu=vecb times (vecc+veca) and vecv=vecc times (veca+vecb) , Then

If |veca|=1,|vecb|=2,|vecc|=3and veca+vecb+vecc=0 the show that veca.vecb+vecb.vecc+vecc.veca=- 7

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then: