Home
Class 12
MATHS
The value of the determinant |{:(cos(the...

The value of the determinant `|{:(cos(theta+alpha),-sin(theta+alpha),cos2alpha),(sintheta,costheta,sinalpha),(-costheta,sintheta,lambdacosalpha):}|` is

A

independent of `theta` for all `lambda in R`

B

independent of `theta` and `alpha` when `lambda=1`

C

independent of `theta` and `alpha` when `lambda=-1`

D

independent of `lambda` for all `theta`

Text Solution

Verified by Experts

The correct Answer is:
A, C

`(a,c)` `|{:(cos(theta+alpha),-sin(theta+alpha),cos2alpha),(sintheta,costheta,sinalpha),(-costheta,sintheta,lambdacosalpha):}|`
`=(1)/(sinalphacosalpha)|{:(cos(theta+alpha),-sin(theta+alpha),cos2alpha),(sinthetasinalpha,costhetasinalpha,sin^(2)alpha),(-costhetacosalpha,sinthetacosalpha,lambdacos^(2)alpha):}|`
[Multiplying `R_(2)` and `R_(3)` by `sin alpha ` and `cos alpha`, respectively]
`=(1)/(sinalphacosalpha)xx|{:(0,0,cos2alpha+sin^(2)alpha+lambdacos^(2)alpha),(sinthetasinalpha,costhetasinalpha,sin^(2)alpha),(-costhetacosalpha,sinthetacosalpha,lambdacos^(2)alpha):}|`
[Applying `R_(1)toR_(1)+R_(2)+R_(3)`]
`=(cos2alpha+sin^(2)alpha+lambdacos^(2)alpha)/(sinalpha*cosalpha)|{:(sinthetasinalpha,costhetasinalpha),(-costhetacosalpha,sintheta cosalpha):}|`
`=(cos^(2)alpha+lambdacos^(2)alpha)|{:(sintheta,costheta),(-costheta,sintheta):}|=(1+lambda)cos^(2)alpha`
Therefore, the given determinants is independent of `theta` for all real values of `lambda`.
Also , `lambda=-1`, then it is independent of `theta` and `alpha`.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos

Similar Questions

Explore conceptually related problems

costheta[{:(costheta,-sin theta),(sintheta,costheta):}]+sintheta[{:(sintheta,costheta),(-costheta,sintheta):}]=?

If cos(theta-alpha),cos(theta),cos(theta+alpha) are in H.P. then costheta.secalpha/2

Simplify: cos theta[{:(costheta,sintheta),(-sintheta,costheta):}]+sintheta[{:(sin theta ,-costheta),(costheta, sintheta):}]

The value of f(pi/6) where f(theta)=|{:(cos^2theta,costhetasintheta,-sintheta),(costhetasintheta,sin^2theta,costheta),(sintheta,-costheta,0):}|

Prove that cos 4theta–cos 4alpha = 8(cos theta-cos alpha)(cos theta+ cos alpha )(cos theta -sin alpha)(cos theta+sin alpha)

A value of theta satifying 4costheta sintheta - 2sintheta =0 is

Prove that : (sintheta-costheta)/(sintheta+costheta)+(sintheta+costheta)/(sintheta-costheta)=(2)/(2sin^(2)theta-1)

Prove that : (cos^(2)theta)/(1-tantheta)+(sin^(3)theta)/(sintheta-costheta)=1+sinthetacostheta

Simplify the following : cos theta [{:(costheta,-sintheta ),(sintheta,costheta ):}]+sintheta[{:(sintheta,costheta),(-costheta,sintheta):}]

If {:A=[(cos theta,sintheta),(-sintheta,costheta)]:}," then A.A' is