Home
Class 12
MATHS
The domain of the function f(x)=1/(sqrt(...

The domain of the function `f(x)=1/(sqrt(4x-|x^2-10 x+9|))` is (a)`(7-sqrt(40),7+sqrt(40))`(b) `(0,7+sqrt(40))`(c)`(7-sqrt(40),oo)` (d) none of these

A

`(7-sqrt(40), 7+sqrt(40))`

B

`(0,7+sqrt(40))`

C

`(7-sqrt(40),oo)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \frac{1}{\sqrt{4x - |x^2 - 10x + 9|}} \), we need to ensure that the expression inside the square root is positive. This means we need to solve the inequality: \[ 4x - |x^2 - 10x + 9| > 0 \] ### Step 1: Analyze the expression inside the absolute value First, we need to simplify the expression \( |x^2 - 10x + 9| \). We can factor the quadratic: \[ x^2 - 10x + 9 = (x - 1)(x - 9) \] ### Step 2: Determine the critical points The critical points where the expression changes sign are found by setting \( x^2 - 10x + 9 = 0 \): \[ x - 1 = 0 \quad \Rightarrow \quad x = 1 \] \[ x - 9 = 0 \quad \Rightarrow \quad x = 9 \] ### Step 3: Test intervals We will test the intervals defined by the critical points \( x = 1 \) and \( x = 9 \): 1. **Interval \( (-\infty, 1) \)**: - Choose \( x = 0 \): \[ |0^2 - 10(0) + 9| = |9| = 9 \] \[ 4(0) - 9 = -9 \quad \text{(not valid)} \] 2. **Interval \( (1, 9) \)**: - Choose \( x = 5 \): \[ |5^2 - 10(5) + 9| = |25 - 50 + 9| = |-16| = 16 \] \[ 4(5) - 16 = 20 - 16 = 4 \quad \text{(valid)} \] 3. **Interval \( (9, \infty) \)**: - Choose \( x = 10 \): \[ |10^2 - 10(10) + 9| = |100 - 100 + 9| = |9| = 9 \] \[ 4(10) - 9 = 40 - 9 = 31 \quad \text{(valid)} \] ### Step 4: Combine results From the tests, we find that the expression \( 4x - |x^2 - 10x + 9| > 0 \) is valid in the intervals \( (1, 9) \) and \( (9, \infty) \). ### Step 5: Exclude points where the expression is zero We also need to check where the expression inside the square root equals zero: 1. Set \( 4x - |x^2 - 10x + 9| = 0 \): - For \( x \in (1, 9) \): \[ 4x = |x^2 - 10x + 9| \Rightarrow 4x = 16 \quad \Rightarrow x = 4 \] - For \( x \in (9, \infty) \): \[ 4x = 9 \quad \Rightarrow x = \frac{9}{4} \quad \text{(not in this interval)} \] Thus, \( x = 4 \) must be excluded from the domain. ### Final Domain The domain of \( f(x) \) is: \[ (1, 4) \cup (4, 9) \cup (9, \infty) \] ### Conclusion Therefore, the correct answer is: **(d) none of these**

To find the domain of the function \( f(x) = \frac{1}{\sqrt{4x - |x^2 - 10x + 9|}} \), we need to ensure that the expression inside the square root is positive. This means we need to solve the inequality: \[ 4x - |x^2 - 10x + 9| > 0 \] ### Step 1: Analyze the expression inside the absolute value ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.15|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=4-sqrt(x^(2)-9) is

The domain of the function f(x)=sqrt(x-sqrt(1-x^2)) is

The domain of the function f defined by f(x)= sqrt(x^(2)-9) is

The domain of the function f(x)=log_(10)(sqrt(x-4)+sqrt(6-x)) is

The domain of the function f(x)=sqrt(sinx+cosx)+sqrt(7x-x^2-6) is

What is the domain of the function f(x)=4-sqrt(3x^(3)-7) ?

Integrate the functions 1/(sqrt(7-6x-x^2)

The domain of the function f(x)=sqrt(-log_.3 (x-1))/(sqrt(x^2+2x+8)) is

Find the domain of the function : f(x)=1/(sqrt((log)_(1/2)(x^2-7x+13)))

Find the domain of the function : f(x)=1/(sqrt((log)_(1/2)(x^2-7x+13)))

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Single Correct Answer Type
  1. The domain of the function f(x)=sqrt(1n((|x|-1))(x^2+4x+4)) is (-3,-1...

    Text Solution

    |

  2. The domain of f(x)=1n(a x^3+(a+b)x^2+(b+c)x+c), where a >0,b^2-4a c=0,...

    Text Solution

    |

  3. The domain of the function f(x)=1/(sqrt(4x-|x^2-10 x+9|)) is (a)(7...

    Text Solution

    |

  4. The domain of the function f(x)=(1)/(sqrt(|cosx|+cosx)) is

    Text Solution

    |

  5. f(x)=sqrt(x^(12)-x^(9)+x^(4)-x+1)

    Text Solution

    |

  6. The domain of the function f(x)=sqrt(sinx+cosx)+sqrt(7x-x^2-6) is

    Text Solution

    |

  7. Which one of following best represents the graph of y=x^(logx pi)

    Text Solution

    |

  8. If x is real, then the value of the expression (x^2+14 x+9)/(x^2+2x+3)...

    Text Solution

    |

  9. The range of the function f(x)=|x-1|+|x-2|, -1 le x le 3, is

    Text Solution

    |

  10. The function f:R to R is defined by f(x)=cos^(2)x+sin^(4)x for x in R....

    Text Solution

    |

  11. The range of f9x)=[|s in x|+|cosx"|""]"dot Where [.] denotes the great...

    Text Solution

    |

  12. The range of function f(x)=^(7-x)P(x-3)i s (a) {1,2,3} (b) {1,2...

    Text Solution

    |

  13. The range of f(x)=sin^(-1)((x^2+1)/(x^2+2)) is (a)[0,pi/2] (b) (0,pi/...

    Text Solution

    |

  14. The range of the function f(x)=(e^x-e^(|x|))/(e^x+e^(|x|)) is

    Text Solution

    |

  15. Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] deno...

    Text Solution

    |

  16. The range of the function f defined by f(x)=[1/(sin{x})] (where [.] an...

    Text Solution

    |

  17. Range of function f(x) = cos (k sin x) is [-1, 1], then the least posi...

    Text Solution

    |

  18. Let f(x)=sqrt(|x|-|x+)(w h e r e{dot} denotes the fractional part of (...

    Text Solution

    |

  19. The range of f(x)=cos^(-1)((1+x^2)/(2x))+sqrt(2-x^2) is (a){0,1+pi/2} ...

    Text Solution

    |

  20. The range of the following function is f(x)=sqrt((1-cosx)sqrt((1-cosx)...

    Text Solution

    |