Home
Class 12
MATHS
cos e c(360^0)/7+cos e c(540^0)/7= cos ...

`cos e c(360^0)/7+cos e c(540^0)/7=` `cos e c(180^0)/7` (b) `cos e c(90^0)/7` `sec(180^0)/7` (d) `sec(90^0)/7`

A

`co sec((180^(@))/(7))`

B

`co sec((90^(@))/(7))`

C

`sec( (180^(@))/(7))`

D

`sec((90^(@))/(7))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos \left( \frac{360^\circ}{7} \right) + \cos \left( \frac{540^\circ}{7} \right) \), we will follow these steps: ### Step 1: Define \( \alpha \) Let \( \alpha = \frac{180^\circ}{7} \). This means that: \[ \frac{360^\circ}{7} = 2\alpha \quad \text{and} \quad \frac{540^\circ}{7} = 3\alpha \] ### Step 2: Rewrite the expression Now we can rewrite the original expression using \( \alpha \): \[ \cos \left( \frac{360^\circ}{7} \right) + \cos \left( \frac{540^\circ}{7} \right) = \cos(2\alpha) + \cos(3\alpha) \] ### Step 3: Use the cosine addition formula We can use the formula for the sum of cosines: \[ \cos A + \cos B = 2 \cos \left( \frac{A+B}{2} \right) \cos \left( \frac{A-B}{2} \right) \] Here, \( A = 3\alpha \) and \( B = 2\alpha \): \[ \cos(3\alpha) + \cos(2\alpha) = 2 \cos \left( \frac{3\alpha + 2\alpha}{2} \right) \cos \left( \frac{3\alpha - 2\alpha}{2} \right) \] This simplifies to: \[ = 2 \cos \left( \frac{5\alpha}{2} \right) \cos \left( \frac{\alpha}{2} \right) \] ### Step 4: Substitute back for \( \alpha \) Now substitute back \( \alpha = \frac{180^\circ}{7} \): \[ = 2 \cos \left( \frac{5 \cdot \frac{180^\circ}{7}}{2} \right) \cos \left( \frac{\frac{180^\circ}{7}}{2} \right) \] This simplifies to: \[ = 2 \cos \left( \frac{900^\circ}{7} \right) \cos \left( \frac{90^\circ}{7} \right) \] ### Step 5: Evaluate the expression Now we need to evaluate \( \cos \left( \frac{900^\circ}{7} \right) \). Notice that: \[ \frac{900^\circ}{7} = 128.57^\circ \quad \text{(approximately)} \] This value does not correspond to a standard angle, but we can use the fact that \( \cos(180^\circ - x) = -\cos(x) \). ### Step 6: Final expression Thus, the expression simplifies to: \[ = 2 \cos \left( \frac{900^\circ}{7} \right) \cos \left( \frac{90^\circ}{7} \right) \] Since \( \cos(90^\circ) = 0 \), the entire expression evaluates to: \[ = \frac{1}{\sin \left( \frac{180^\circ}{7} \right)} \] ### Conclusion This means: \[ \cos \left( \frac{360^\circ}{7} \right) + \cos \left( \frac{540^\circ}{7} \right) = \cos \left( \frac{180^\circ}{7} \right) \] Thus, the correct answer is option (a) \( \cos \left( \frac{180^\circ}{7} \right) \).

To solve the equation \( \cos \left( \frac{360^\circ}{7} \right) + \cos \left( \frac{540^\circ}{7} \right) \), we will follow these steps: ### Step 1: Define \( \alpha \) Let \( \alpha = \frac{180^\circ}{7} \). This means that: \[ \frac{360^\circ}{7} = 2\alpha \quad \text{and} \quad \frac{540^\circ}{7} = 3\alpha \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Multiple Correct Answer Type)|22 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Linked Comprehension Type)|20 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.10|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

cos e c(360^0)/7+cos e c(540^0)/7= (a) cosec(180^0)/7 ,(b) cosec(90^0)/7 , (c) sec(180^0)/7 , (d) sec(90^0)/7

The value of cos e c10^0+cos e c50^0-cos e c70^0 is ____

Evaluate : (sin50^0)/(cos40^0)+(cos e c40^0)/(sec50^0)-4cos50^0cos e c40^0

Prove: (cos e c\ A)/(cos e c\ A-1)+(cos e c\ A)/(cos e c\ A+1)=2sec^2A

Prove that: (cos e c(90^0+theta)+cot(450^0+theta))/(cos e c(90^0-theta)+t a n(180^0-theta))+(t a n(180^0+theta)+s e c(180^0-theta))/(t a n(360^0+theta)-s e c(-theta)) =2

Show that sqrt(3)\ cos e c\ 20^0-sec20^0=4.

Prove that: (sin70^@)/(cos20^@)+(cos e c\ 20^@)/(sec70^@)-2cos70^@\ cos e c\ 20^@=0

Evaluate the following: (cos37^0)/(sin53^0) (ii) (tan54^0)/(cot36^0) (iv) (cos e c34^0)/(sec56^0)

Which of the following is the greates? cos e c1 (b) cos e c2 cos e c4 (d) cos e c(-6)

The value of (cos(90^0-theta)sec(90^0-theta)tantheta)/(cos e c(90^0-theta)sin(90^0-theta)cot(90^0-theta))+(tan(90^0-theta))/(cottheta)"i s" 1 (b) -1 (c) 2 (d) -2

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Single Correct Answer Type)
  1. Let P(x)=((1-cos2x+sin2x)/(1+cos2x+s in2x))^2+((1+cotx+cot^2x)/(1+tanx...

    Text Solution

    |

  2. If (3-tan^(2)""(pi)/(7))/(1-tan^(2)""(pi)/(7))=kcos""(pi)/(7) then the...

    Text Solution

    |

  3. cos e c(360^0)/7+cos e c(540^0)/7= cos e c(180^0)/7 (b) cos e c(90^0...

    Text Solution

    |

  4. If theta1a n dtheta2 are two values lying in [2,2pi] for which t a nth...

    Text Solution

    |

  5. If tantheta=sqrt(n), where n in N ,geq2,t h e nsec2theta is always a ...

    Text Solution

    |

  6. If sin2theta=cos3thetaa n dtheta is an acute angle, then sintheta equa...

    Text Solution

    |

  7. If cosx= tany, cosy= tanz and cosz= tanx, prove that sinx= siny= sinz ...

    Text Solution

    |

  8. The value of 70^0+4cos70^0 is 1/(sqrt(3)) (b) sqrt(3) (c) 2sqrt(3) ...

    Text Solution

    |

  9. If sinx+cosx=sqrt7/2 where xin[0,pi/4] then tan(x/2) is equal to

    Text Solution

    |

  10. If (tan3A)/(tanA)=k(k!=1) then which of the following is not true? (co...

    Text Solution

    |

  11. If x in (pi,(3pi)/2),t h e n4cos^2(pi/4-x/2)+sqrt(4sin^4x+sin^2 2x) is...

    Text Solution

    |

  12. If cosx=(2cosy-1)/(2-cosy), where x , y in (0,pi) then tan(x/2)xxcot(y...

    Text Solution

    |

  13. cot16^0cot44^0+cot44^0cot76^0-cot76^0cot16^0= 1 (b) 2 (c) 3 (d) ...

    Text Solution

    |

  14. If tanx=b/a , then sqrt((a+b)/(a-b))+sqrt((1-b)/(a+b)) is equal to 2s ...

    Text Solution

    |

  15. Given that (1+sqrt(1+x))tany=1+sqrt(1-x) . Then sin4y is equal to 4x ...

    Text Solution

    |

  16. If cos2B=(cos(A+C))/("cos"(A-C)), then tanA ,t a n B ,tanC are in A.P....

    Text Solution

    |

  17. If ("cos"(x-y))/("cos"(+y))+("cos"(z+t))/(cos(z-t))=0 , then the value...

    Text Solution

    |

  18. If tan beta=2sin alpha sin gamma co sec(alpha+gamma), then cot alpha,c...

    Text Solution

    |

  19. The value of tan9^@-tan2 7^@-tan6 3^@+tan8 1^@ is equal to

    Text Solution

    |

  20. If cos^3xsin2x=sum(r=0)^n axsin(r x),AAx in R then

    Text Solution

    |