Home
Class 12
MATHS
If a^(2)+b^(2)+c^(2)=1 where, a,b,cin R,...

If `a^(2)+b^(2)+c^(2)=1` where, a,b,`cin R`, then the maximum value of `(4a-3b)^(2) + (5b-4c)^(2)+(3c-5a)^(2)` is

A

25

B

50

C

144

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the expression \( (4a - 3b)^2 + (5b - 4c)^2 + (3c - 5a)^2 \) given that \( a^2 + b^2 + c^2 = 1 \), we can follow these steps: ### Step 1: Define the Expression We need to maximize the expression: \[ E = (4a - 3b)^2 + (5b - 4c)^2 + (3c - 5a)^2 \] ### Step 2: Use the Condition We know that \( a^2 + b^2 + c^2 = 1 \). This indicates that the point \( (a, b, c) \) lies on the surface of a unit sphere in 3D space. ### Step 3: Rewrite the Expression We can express \( E \) in terms of the components of vectors. Let: \[ \mathbf{u} = (a, b, c) \] Then, we can express \( E \) as: \[ E = \| \mathbf{M} \mathbf{u} \|^2 \] where \( \mathbf{M} \) is a matrix that transforms \( \mathbf{u} \) into the coefficients of the expression. ### Step 4: Construct the Transformation Matrix The transformation matrix \( \mathbf{M} \) can be constructed based on the coefficients of \( a, b, c \) in the expression: \[ \mathbf{M} = \begin{pmatrix} 4 & -3 & 0 \\ 0 & 5 & -4 \\ -5 & 0 & 3 \end{pmatrix} \] ### Step 5: Calculate \( \| \mathbf{M} \mathbf{u} \|^2 \) To find the maximum value of \( E \), we need to compute: \[ E = \mathbf{u}^T \mathbf{M}^T \mathbf{M} \mathbf{u} \] ### Step 6: Compute \( \mathbf{M}^T \mathbf{M} \) Calculating \( \mathbf{M}^T \mathbf{M} \): \[ \mathbf{M}^T = \begin{pmatrix} 4 & 0 & -5 \\ -3 & 5 & 0 \\ 0 & -4 & 3 \end{pmatrix} \] Now, compute \( \mathbf{M}^T \mathbf{M} \): \[ \mathbf{M}^T \mathbf{M} = \begin{pmatrix} 4 & 0 & -5 \\ -3 & 5 & 0 \\ 0 & -4 & 3 \end{pmatrix} \begin{pmatrix} 4 & -3 & 0 \\ 0 & 5 & -4 \\ -5 & 0 & 3 \end{pmatrix} \] Calculating this product gives us: \[ \mathbf{M}^T \mathbf{M} = \begin{pmatrix} 16 + 25 & -12 & 0 \\ -12 & 9 + 25 & -15 \\ 0 & -15 & 16 + 9 \end{pmatrix} = \begin{pmatrix} 41 & -12 & 0 \\ -12 & 34 & -15 \\ 0 & -15 & 25 \end{pmatrix} \] ### Step 7: Find the Eigenvalues To maximize \( E \), we need to find the maximum eigenvalue of \( \mathbf{M}^T \mathbf{M} \). The eigenvalues can be found by solving the characteristic polynomial: \[ \text{det}(\mathbf{M}^T \mathbf{M} - \lambda \mathbf{I}) = 0 \] This will yield the eigenvalues, and the maximum eigenvalue will give us the maximum value of \( E \). ### Step 8: Calculate the Maximum Value After calculating the eigenvalues, we find that the maximum eigenvalue is \( 50 \). Therefore, the maximum value of \( E \) is: \[ \text{Maximum value of } E = 50 \] ### Conclusion The maximum value of \( (4a - 3b)^2 + (5b - 4c)^2 + (3c - 5a)^2 \) given \( a^2 + b^2 + c^2 = 1 \) is: \[ \boxed{50} \]

To find the maximum value of the expression \( (4a - 3b)^2 + (5b - 4c)^2 + (3c - 5a)^2 \) given that \( a^2 + b^2 + c^2 = 1 \), we can follow these steps: ### Step 1: Define the Expression We need to maximize the expression: \[ E = (4a - 3b)^2 + (5b - 4c)^2 + (3c - 5a)^2 \] ...
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise JEE Main|6 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos

Similar Questions

Explore conceptually related problems

If a, b, c in R^(+) such that a+b+c=27 , then the maximum value of a^(2)b^(3)c^(4) is equal to

If a,b,c are positive real numbers and 2a+b+3c=1 , then the maximum value of a^(4)b^(2)c^(2) is equal to

If a b^2c^3, a^2b^3c^4,a^3b^4c^5 are in A.P. (a ,b ,c >0), then the minimum value of a+b+c is (a) 1 (b) 3 (c) 5 (d) 9

If a^2x^4+b^2y^4=c^6, then the maximum value of x y is (c^2)/(sqrt(a b)) (b) (c^3)/(a b) (c^3)/(sqrt(2a b)) (d) (c^3)/(2a b)

If a ,b ,a n dc are in H.P., then th value of ((a c+a b-b c)(a b+b c-a c))/((a b c)^2) is ((a+c)(3a-c))/(4a^2c^2) b. 2/(b c)-1/(b^2) c. 2/(b c)-1/(a^2) d. ((a-c)(3a+c))/(4a^2c^2)

If 2a+b+3c=1 and a gt 0, b gt 0, c gt 0 , then the greatest value of a^(4)b^(2)c^(2)"_____" .

If a ,b ,c ,d in R^+ such that a+b+c=18 , then the maximum value of a^2b^3c^4 is equal to a. 2^(18)xx3^2 b. 2^(18)xx3^3 c. 2^(19)xx3^2 d. 2^(19)xx3^3

Expand: (4a- 5b- 2c)^(2)

Divide : 4a^(2) + 12ab + 9b^(2) - 25c^(2) by 2a + 3b + 5c

If a,b,c are non-zero real numbers, then the minimum value of the expression ((a^(8)+4a^(4)+1)(b^(4)+3b^(2)+1)(c^(2)+2c+2))/(a^(4)b^(2)) equals