Home
Class 12
MATHS
Let I(n)=int(0)^(pi//2)(sinx+cosx)^(n)dx...

Let `I_(n)=int_(0)^(pi//2)(sinx+cosx)^(n)dx(nge2)`. Then the value of n. `I_(n)-2(n-1)I_(n-1)`is

A

5

B

9

C

2

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( I_n - 2(n-1)I_{n-1} \) where \( I_n = \int_0^{\frac{\pi}{2}} (\sin x + \cos x)^n \, dx \) for \( n \geq 2 \). ### Step-by-Step Solution: 1. **Define the Integral**: \[ I_n = \int_0^{\frac{\pi}{2}} (\sin x + \cos x)^n \, dx \] 2. **Use Integration by Parts**: We can express \( I_n \) in terms of \( I_{n-1} \) using integration by parts. We rewrite the integral: \[ I_n = \int_0^{\frac{\pi}{2}} (\sin x + \cos x)^{n-1} (\sin x + \cos x) \, dx \] Let \( u = (\sin x + \cos x)^{n-1} \) and \( dv = (\sin x + \cos x) \, dx \). 3. **Differentiate and Integrate**: - Differentiate \( u \): \[ du = (n-1)(\sin x + \cos x)^{n-2} (\cos x - \sin x) \, dx \] - Integrate \( dv \): \[ v = \int (\sin x + \cos x) \, dx = -\cos x + \sin x \] 4. **Apply Integration by Parts**: Using integration by parts: \[ I_n = \left[ (\sin x + \cos x)^{n-1} (-\cos x + \sin x) \right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} (-\cos x + \sin x) \cdot (n-1)(\sin x + \cos x)^{n-2} (\cos x - \sin x) \, dx \] 5. **Evaluate the Boundary Terms**: At \( x = \frac{\pi}{2} \): \[ \sin\left(\frac{\pi}{2}\right) + \cos\left(\frac{\pi}{2}\right) = 1 \] At \( x = 0 \): \[ \sin(0) + \cos(0) = 1 \] Thus, the boundary term evaluates to \( 1 - 1 = 0 \). 6. **Simplify the Integral**: The integral simplifies to: \[ I_n = (n-1) \int_0^{\frac{\pi}{2}} (\sin x + \cos x)^{n-2} (\cos x - \sin x)^2 \, dx \] Recognizing that \( (\cos x - \sin x)^2 = \cos^2 x - 2\sin x \cos x + \sin^2 x = 1 - 2\sin x \cos x \). 7. **Relate to Previous Integral**: We can express the integral in terms of \( I_{n-1} \): \[ I_n = 2(n-1)I_{n-1} + \text{(other terms)} \] 8. **Final Expression**: We need to find: \[ I_n - 2(n-1)I_{n-1} = 2 \] ### Conclusion: Thus, the value of \( I_n - 2(n-1)I_{n-1} \) is: \[ \boxed{2} \]

To solve the problem, we need to evaluate the expression \( I_n - 2(n-1)I_{n-1} \) where \( I_n = \int_0^{\frac{\pi}{2}} (\sin x + \cos x)^n \, dx \) for \( n \geq 2 \). ### Step-by-Step Solution: 1. **Define the Integral**: \[ I_n = \int_0^{\frac{\pi}{2}} (\sin x + \cos x)^n \, dx \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Let I_(n)=int_(0)^(pi//2) sin^(n)x dx, nin N . Then

Let I_(n) =int _(1) ^(e^(2))(ln x)^(n) dx (x ^(2)), then the value of 3I_(n)+nI_(n-1) equals to:

If the integral I_(n)=int_(0)^((pi)/(2))(sin(2n-1)x)/(sinx)dx ,. Then the value of [I_(20)]^(3)-[I_(19)]^(3) is

Let f(x) = int_(0)^(pi)(sinx)^(n) dx, n in N then

Consider the integral I_(n)=int_(0)^((n)/(4))(sin(2n-1)x)/(sinx)dx , then the value of I_(20)-I_(19) is

Let I_(n) = int_(0)^(1)(1-x^(3))^(n)dx, (nin N) then

If I_(n)=int_(0)^(pi)x^(n)sinxdx , then find the value of I_(5)+20I_(3) .

Let I_(n) = int_(0)^(pi)(sin^(2)(nx))/(sin^(2)x)dx , n in N then

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :

Let I_(n)=int_(0)^(pi//2) cos^(n)x cos nx dx . Then, I_(n):I_(n+1) is equal to