Home
Class 11
MATHS
If a(1),a(2),a(3), . . . .,a(n) . . . . ...

If `a_(1),a_(2),a_(3), . . . .,a_(n) . . . . .` are in G.P. and `a_(i)gt0` for each i, then the value of
`|{:(loga_(n)" "loga_(n+1)" "loga_(n+2)),(loga_(n+3)" "loga_(n+4)" "loga_(n+5)),(loga_(n+6)" "loga_(n+7)" "loga_(n+8)):}|`

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH SERIES|Exercise Exercise - 3.1 (Very short answer questions)|20 Videos
  • MATRICES

    AAKASH SERIES|Exercise Exercise - 3.2 (Very short answer questions)|10 Videos
  • MATRICES

    AAKASH SERIES|Exercise LINEAR EQUATIONS - PRACTICE EXERCISE|15 Videos
  • MATHEMATICAL INDUCTION

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I) LEVEL-I (Principle of Mathematical Induction) (Straight Objective Type Questions)|55 Videos
  • MAXIMA & MINIMA

    AAKASH SERIES|Exercise EXERCISE-III|35 Videos

Similar Questions

Explore conceptually related problems

If a_(1),a_(2),…………..,a_(n) , ……… are in G.P and a_(i)gt0 for each i then the value of |(loga_(n), loga_(n+2),loga_(n+4)),(log a_(n+6),loga_(n+8),loga_(n+10)),(loga_(n+12),loga_(n+14),loga_(n+16))|=

If a_(1),a_(2) …… form G.P and a_(i)gt0,AAige1 , then |(loga_(m),loga_(m+1),loga_(m+2)),(loga_(m+3),loga_(m+4),loga_(m+5)),(loga_(m+6),loga_(m+7),loga_(m+8))|=

If a_(1), a_(2), a_(3),…, a_(n) are in A.P such that a_(4) - a_(7) + a_(10)= m , then sum of the first 13 terms of the A.P is

If a_(1), a_(2), a_(3),….a_(n) be an A.P with common difference d, then sec a_(1) sec a_(2) + sec a_(2) sec a_(3) + …+ sec a_(n-1) sec a_(n) =

If a_(1), a_(2), a_(3)…..a_(n) are in A.P. with common difference d then sin d [cosec a_(1) cosec a_(2) + cosec a_(2) cosec a_(3) + cosec a_(3) cosec a_(4)+ …"n terms"] =

If a_(n) = (n)/(n+1) , then a_(2017) = ………..

If a_(1),a_(2),a_(3),...a_(n) are in A.P. with common difference d, then tan[tan^(-1)((d)/(1+a_(1)a_(2)))+tan^(-1)((d)/(1+a_(2)a_(3)))+,....+tan^(-1)((d)/(1+a_(n-1)a_(n)))]=

If A=[a_(ij)]_(n xx n) and a_(ij)=i(i+j) then trace of A =

a_(n) in GP = …………

If a_(1), a_(2), a_(3),…..a_(n) are in A.P where a_(i) gt 0, AA I then (1)/(sqrt(a_(1)) + sqrt(a_(2))) + (1)/(sqrt(a_(2)) + sqrt(a_(3)))+ …+ (1)/(sqrt(a_(n-1)) + sqrt(a_(n))) = (k)/(sqrt(a_(1)) + sqrt(a_(n))) then k=