Home
Class 12
MATHS
If cj >0 for i=1,2,..., n , prove that t...

If `c_j >0` for `i=1,2,..., n ,` prove that `tan^(-1)((c_1x-y)/(c_1y+x))+tan^(-1)((c_2-c_1)/(1+c_2c_1))+tan^(-1)((c_3-c_2)/(1+c_3c_2))+...+tan^(-1)(1/(c_n))=tan^(-1)(x/y)`

A

`tan^(-1).(y)/(x)`

B

`tan^(-1)yx`

C

`tan^(-1).(x)/(y)`

D

`tan^(-1)(x-y)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If int(1)/((x^(2)+4)(x^(2)+9))dx=A" tan"^(-1)(x)/(2)+Btan^(-1)((x)/(3))+C , then A-B=

In triangleABC , if angleA=90^(@)", then "tan^(-1)((c)/(a+b))+tan^(-1)((b)/(a+c))=

int frac{1}{4+5 cos^2 x} dx=.............. A) (1/3) tan^(-1) ((2/3)tan x) + c B) (1/6) tan^(-1) ((2/3)tan x) + c C) (1/4) tan^(-1) ((2/3)tan x) + c D) (1/3) tan^(-1) ((1/3)tan x) + c

The angle between lines represented by the equation 11x^2-24xy+4y^2=0 are: a) tan^-1((-3)/4) b) tan^-1(3/4) c) tan^-1(4/3) d) tan^-1(2/3)

If y=tan^(-1)(1/(1+x+x^2))+tan^(-1)(1/(x^2+3x+3))+tan^(-1)(1/(x^2+5x+7))+ ....+ upto n terms, then find the value of y^(prime)(0)dot

int frac{1}{x^2 + 4x + 8} dx =............... A) tan^(-1) (frac{x+2}{2}) + c B) tan^(-1) (x+2) + c C) (1/4) tan^(-1) (x+2) + c D) (1/2) tan^(-1) (frac{x+2}{2}) + c

C_(1) + C_(2) + C_(3) + ….. C_(n) = 2^(n)-1

int frac{ t^2 + 1}{ t^4 + 1} dt=...........a) frac{1}{sqrt2}[tan^(-1)(sqrt 2t-1)+tan^(-1)(sqrt 2t+1)]+c b) sqrt2[tan^(-1)(sqrt 2t-1)+tan^(-1)(sqrt 2t+1)]+c c) frac{1}{2sqrt2}[tan^(-1)(sqrt 2t-1)+tan^(-1)(sqrt 2t+1)]+c d) 2sqrt2[tan^(-1)(sqrt 2t-1)+tan^(-1)(sqrt 2t+1)]+c

C_1/C_0 + (2C_2)/C_1 + (3C_3)/C_2 + .... (nC_n)/C_(n-1) is