Home
Class 12
MATHS
If (x^y)(y^x)=1, prove that (dy)/(dx)=-(...

If `(x^y)(y^x)=1`, prove that `(dy)/(dx)=-(y(y+xlogy))/(x(ylogx+x))`

A

`(y(y+x log y))/(x(ylogx +x))`

B

`(y(x+y logx))/(x(y + xlogy))`

C

`-y/x(y+x logy)/(x+y logx)`

D

`-y/x(x+ylogx)/(y+x logy)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If sec((x+y)/(x-y))=a , prove that (dy)/(dx)=y/x .

If y=a^(x^(a^x..oo)) then prove that dy/dx=(y^2 log y )/(x(1-y log x log y))

If sin (x+y) +cos (x+y) =1,then (dy)/(dx)=

If x^p y^q= (x+y)^(p+q) , then prove that dy/dx = y/x

If sqrt(1-x^6)+sqrt(1-y^6)=a(x^3-y^3) , prove that (dy)/(dx)=(x^2)/(y^2)sqrt((1-y^6)/(1-x^6) where (-1 < x <,1 and -1 < y < 1.)

If xsqrt(1 + y) + ysqrt(1 + x) = 0 x != y prove that (dy)/(dx) = (-1)/((1 + x)^(2))