Home
Class 12
MATHS
If y=a^(x^(a^x..oo)) then prove that dy/...

If `y=a^(x^(a^x..oo))` then prove that `dy/dx=(y^2 log y )/(x(1-y log x log y))`

A

`y^(2) log y`

B

y log y

C

`y^(2)/(log y)`

D

`y/(log y)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If y= x^(x^(x...)) , then show that dy/dx = frac{y^2}{x(1-log y)}

If e^y = y^x , then show that dy/dx = frac{(log y)^2}{log y -1}

If x^y = e^(x-y) , then show that dy/dx = frac{log x}{(1+ log x)^2}

If x = e^(x/y) , then show that dy/dx = frac{x-y}{x log x}

If y=(sqrt(x))^((sqrt(x))^((sqrt(x))^(...oo) , show that, x (dy)/(dx)=(y^(2))/(2-y log x).

Find (d^2y)/(dx^2) if y= log(log x)

Solve the following: If x = e^ sin 3t , y= e^cos 3t , then show that dy/dx = - frac{y log x}{x log y}