Home
Class 12
MATHS
let y=t^(10)+1, and x=t^8+1, then (d^2y)...

let `y=t^(10)+1,` and `x=t^8+1,` then `(d^2y)/(dx^2)` is

A

`5/2 t`

B

`20t^(8)`

C

`5/(16t^(6))`

D

`(5t^(6))/16`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=t^(2) and y=t^(3)+1 , then (d^(2)y)/(dx^(2)) is

If x=t^2 and y=t^3 , find (d^2y)/(dx^2) .

If x=f(t) and y=g(t) , then (d^2y)/(dx^2) is equal to

If x=log t , t gt 0 and y=1/t , then (d^(2)y)/(dx^(2)) , is

IF x=2at^2,y=at^4 , then (d^2y)/(dx^2) at t=2 is

If x=2at^2,y=at^4 , then (d^2y)/(dx^2) at t=2 is

If x=e^t sin t , y=e^t cos t , t is a parameter , then (d^2y)/(dx^2) at (1,1) is equal to

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is

If cos x =1/sqrt(1+t^(2)) , and sin y = t/sqrt(1+t^(2)) , then (dy)/(dx) =

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to