Home
Class 12
MATHS
int e^(x log a ) e^(x) dx is equal to A)...

`int e^(x log a ) e^(x) dx` is equal to A) `(a^(x))/( log ae) + C` B) `( e^(x))/( 1+log a )`+ C C) `( ae )^(x) +C` D) `((ae)^(x))/( log ae) +C`

A

`(a^(x))/( log ae) + C`

B

`( e^(x))/( 1+log a )`

C

`( ae )^(x) +C`

D

`((ae)^(x))/( log ae) +C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^{x \log a} e^{x} \, dx \), we can follow these steps: ### Step 1: Combine the Exponents Since both terms in the integral have the same base \( e \), we can combine the exponents: \[ e^{x \log a} e^{x} = e^{x \log a + x} = e^{x (\log a + 1)} \] Thus, the integral becomes: \[ \int e^{x (\log a + 1)} \, dx \] ### Step 2: Use the Exponential Integral Formula The integral of \( e^{kx} \) is given by: \[ \int e^{kx} \, dx = \frac{1}{k} e^{kx} + C \] In our case, \( k = \log a + 1 \). Therefore, we can apply this formula: \[ \int e^{x (\log a + 1)} \, dx = \frac{1}{\log a + 1} e^{x (\log a + 1)} + C \] ### Step 3: Substitute Back Now we substitute back the expression for \( e^{x (\log a + 1)} \): \[ = \frac{1}{\log a + 1} e^{x} e^{x \log a} + C = \frac{1}{\log a + 1} e^{x (1 + \log a)} + C \] Since \( e^{x (1 + \log a)} = (ae)^{x} \), we can rewrite the integral as: \[ = \frac{(ae)^{x}}{\log a + 1} + C \] ### Final Answer Thus, the final answer is: \[ \int e^{x \log a} e^{x} \, dx = \frac{(ae)^{x}}{\log a + 1} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

intx^(3) log x dx is equal to A) (x^(4) log x )/( 4) + C B) (x^(4))/( 8) ( log x - ( 4)/( x^(2)))+C C) (x^(4))/( 16) ( 4 log x -1) +C D) (x^(4))/( 16) ( 4 log x +1) + C

int( x-1)e^(-x) dx is equal to : a) ( x- 2)e^(x) + C b) x e^(-x) + C c) - x e^(x) + C d) ( x+1)e^(-x) +C

int( (log x)^(5) )/( x ) dx is equal to a) (log x^(6))/( 6) + C b) ( ( log x )^(6))/( 6) + C c) ((log x )^(6))/( 3x^(2)) + C d) none of these

int((log _(e)x)^(3))/(x)dx

int(x-1)\ e^(-x)\ dx is equal to x e^x+C (b) x e^x+C (c) -x e^(-x)+C (d) x e^(-x)+C

int " log"_(e) " x dx "

Choose the correct answers int(dx)/(e^x+e^(-x)) is equal to(A) tan^(-1)(e^x)+C (B) tan^(-1)(e^(-x))+C (C) log(e^x-e^(-x))+C (D) log(e^x+e^(-x))+C

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

If f(x)=(log)_x(log x),t h e nf^(prime)(x) at x=e is equal to (a) 1/e (b) e (c) 1 (d) zero

int(x dx)/((x-1)(x-2) equal(A) log|((x-1)^2)/(x-2)|+C (B) log|((x-2)^2)/(x-1)|+C (C) log|((x-1)^2)/(x-2)|+C (D) log|(x-1)(x-2)|+C