Home
Class 12
MATHS
int(1)^(sqrt(3)) (dx)/(1+x^(2)) is equal...

`int_(1)^(sqrt(3)) (dx)/(1+x^(2))` is equal to

A

`(pi)/(3)`

B

`(pi)/(4)`

C

`(pi)/(6)`

D

`(pi)/(12)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to

The value of the integral I=int_((1)/(sqrt3))^(sqrt3)(dx)/(1+x^(2)+x^(3)+x^(5)) is equal to

int sqrt((x)/( 1-x))dx is equal to

Choose the correct answer int_1^sqrt(3) (dx)/(1+x^2) equals(A) pi/3 (B) (2pi)/3 (C) pi/6 (D) pi/(12)

Evaluate: int_1^(sqrt(3))(dx)/(1+x^2)

int(1)/(x(1+root(3)(x))^(2))dx is equal to

The integral int_(-1)^(1) (|x+2|)/(x+2)dx is equal to

int_(1)^(2) (x)/(sqrt(1+2x^(2)))dx

int(1)/(sqrt(2+x-3x^2))dx

int(sqrt(x))/(1+4sqrt(x^(3)))dx is equal to