Home
Class 11
MATHS
Evaluate the following limits: Lim( x to...

Evaluate the following limits: `Lim_( x to pi/2 )(1-sin x)/((pi/2-x)^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\left(\frac{\pi}{2} - x\right)^2}, \] we will follow these steps: ### Step 1: Identify the form of the limit First, we substitute \( x = \frac{\pi}{2} \) directly into the limit: \[ 1 - \sin\left(\frac{\pi}{2}\right) = 1 - 1 = 0, \] and \[ \left(\frac{\pi}{2} - \frac{\pi}{2}\right)^2 = 0^2 = 0. \] This gives us a \( \frac{0}{0} \) indeterminate form, so we need to simplify it. ### Step 2: Change of variable Let \( x = \frac{\pi}{2} - h \). As \( x \to \frac{\pi}{2} \), \( h \to 0 \). Now, we rewrite the limit in terms of \( h \): \[ \lim_{h \to 0} \frac{1 - \sin\left(\frac{\pi}{2} - h\right)}{h^2}. \] ### Step 3: Simplify the sine function Using the identity \( \sin\left(\frac{\pi}{2} - h\right) = \cos h \), we can rewrite the limit: \[ \lim_{h \to 0} \frac{1 - \cos h}{h^2}. \] ### Step 4: Use trigonometric identities We can use the identity \( 1 - \cos h = 2 \sin^2\left(\frac{h}{2}\right) \): \[ \lim_{h \to 0} \frac{2 \sin^2\left(\frac{h}{2}\right)}{h^2}. \] ### Step 5: Rewrite the limit Next, we rewrite the limit: \[ \lim_{h \to 0} 2 \cdot \frac{\sin^2\left(\frac{h}{2}\right)}{h^2} = \lim_{h \to 0} 2 \cdot \left(\frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}}\right)^2 \cdot \frac{1}{\left(\frac{1}{2}\right)^2}. \] ### Step 6: Apply the limit We know that \[ \lim_{x \to 0} \frac{\sin x}{x} = 1. \] Thus, \[ \lim_{h \to 0} \left(\frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}}\right)^2 = 1. \] ### Step 7: Calculate the final value Putting it all together: \[ \lim_{h \to 0} 2 \cdot 1 \cdot \frac{1}{\left(\frac{1}{2}\right)^2} = 2 \cdot 1 \cdot 4 = 8. \] Thus, the limit evaluates to: \[ \frac{1}{2}. \] ### Final Answer Therefore, \[ \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\left(\frac{\pi}{2} - x\right)^2} = \frac{1}{2}. \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(I)|34 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(J)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(G)|22 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Lim_( x to pi/2) (1-sin x)/((pi-2x)^(2))

Evaluate the following limits: Lim_( x to pi/2 ) (cos x)/(pi/2-x)

Evaluate the following limit: (lim)_(x->pi/2)(1-sin x)/((pi/2-x)^2)

Evaluate the following limits : Lim_(x to pi) (sin x )/(x - pi)

Evaluate the following limits : Lim_(xto pi) (sin 2x)/(sinx)

Evaluate the following limits : Lim_( xto pi/2) (1- sin x)/(x cos x)

Evaluate the following limit : Lim_(x to pi/2) (1+cos 2x)/(pi-2x)^(2)

Evaluate the following limits : Lim_(x to pi/2) (e^(sin x)-1)/(sin x)

Evaluate the following limits : lim _( xto pi) ( sin x)/(pi - x)

Evaluate the following limits : Lim_(x to 0) (sin 2x)/x