Home
Class 11
MATHS
Lim( x to pi/2) (1-sin x)/((pi-2x)^(2))...

`Lim_( x to pi/2) (1-sin x)/((pi-2x)^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{(\pi - 2x)^2} \), we will follow these steps: ### Step 1: Substitute \( x = \frac{\pi}{2} \) First, we substitute \( x = \frac{\pi}{2} \) into the limit expression: \[ 1 - \sin\left(\frac{\pi}{2}\right) = 1 - 1 = 0 \] And for the denominator: \[ \pi - 2\left(\frac{\pi}{2}\right) = \pi - \pi = 0 \] Thus, we have the indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] if the limit on the right exists. Here, \( f(x) = 1 - \sin x \) and \( g(x) = (\pi - 2x)^2 \). ### Step 3: Differentiate the Numerator and Denominator Now we differentiate both the numerator and the denominator: - The derivative of the numerator \( f(x) = 1 - \sin x \) is: \[ f'(x) = -\cos x \] - The derivative of the denominator \( g(x) = (\pi - 2x)^2 \) using the chain rule is: \[ g'(x) = 2(\pi - 2x)(-2) = -4(\pi - 2x) \] ### Step 4: Rewrite the Limit Now we can rewrite the limit using the derivatives: \[ \lim_{x \to \frac{\pi}{2}} \frac{-\cos x}{-4(\pi - 2x)} = \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{4(\pi - 2x)} \] ### Step 5: Substitute \( x = \frac{\pi}{2} \) Again Now we substitute \( x = \frac{\pi}{2} \) again: - The numerator becomes: \[ \cos\left(\frac{\pi}{2}\right) = 0 \] - The denominator becomes: \[ 4(\pi - 2\left(\frac{\pi}{2}\right)) = 4(0) = 0 \] This is again an indeterminate form \( \frac{0}{0} \). ### Step 6: Apply L'Hôpital's Rule Again We apply L'Hôpital's Rule a second time: - The derivative of the numerator \( \cos x \) is: \[ -\sin x \] - The derivative of the denominator \( 4(\pi - 2x) \) is: \[ -8 \] ### Step 7: Rewrite the Limit Again Now we can rewrite the limit again: \[ \lim_{x \to \frac{\pi}{2}} \frac{-\sin x}{-8} = \lim_{x \to \frac{\pi}{2}} \frac{\sin x}{8} \] ### Step 8: Substitute \( x = \frac{\pi}{2} \) One Last Time Now we substitute \( x = \frac{\pi}{2} \): \[ \sin\left(\frac{\pi}{2}\right) = 1 \] Thus, the limit becomes: \[ \frac{1}{8} \] ### Final Answer The limit is: \[ \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{(\pi - 2x)^2} = \frac{1}{8} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(I)|34 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(J)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(G)|22 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Lim_(x to pi/2) (1-sin x)/((pi/2-x)^(2))

Evaluate the following limits: Lim_( x to pi/2 )(1-sin x)/((pi/2-x)^(2))

Lim_(x to pi/2) (1+cos 2x)/(pi-2x)^(2)

Evaluate the following limit : Lim_(x to pi/2) (1+cos 2x)/(pi-2x)^(2)

Evaluate lim_(xto pi/2)(1-"sin"x)^2/((pi/2-x)^(2))

Lim_(x to pi)(1+sin x)/(x - pi)

Statement 1 lim_(x to pi//2)(sin(cot^(2)x))/((pi-2x)^(2))=1/2 Statement 2: lim_(theta to 0)(sin theta)/(theta)=1 and lim_(theta to 0)(tan theta)/(theta)=1 , where theta is measured in radians.

Evaluate lim_(xto(pi)/(2)) (1+cos2x)/((pi-2x)^(2)).

Evaluate the following limits: Lim_( x to pi/2 ) (cos x)/(pi/2-x)

Evaluate the following limit: (lim)_(x->pi/2)(1-sin x)/((pi/2-x)^2)