Home
Class 11
MATHS
Evaluate the following limits : lim(x ...

Evaluate the following limits :
`lim_(x to 0) (3^(2x)-2^(3x))/x`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{3^{2x} - 2^{3x}}{x}, \] we can follow these steps: ### Step 1: Rewrite the expression We start by adding and subtracting 1 in the numerator: \[ \lim_{x \to 0} \frac{3^{2x} - 1 - (2^{3x} - 1)}{x}. \] ### Step 2: Separate the limit We can separate the limit into two parts: \[ \lim_{x \to 0} \left( \frac{3^{2x} - 1}{x} - \frac{2^{3x} - 1}{x} \right). \] ### Step 3: Multiply and divide by appropriate factors Next, we will manipulate each term. For the first term, we multiply and divide by \(2\) and for the second term, we multiply and divide by \(3\): \[ = \lim_{x \to 0} \left( \frac{3^{2x} - 1}{2x} \cdot 2 - \frac{2^{3x} - 1}{3x} \cdot 3 \right). \] ### Step 4: Apply the limit property Using the property \[ \lim_{x \to 0} \frac{a^x - 1}{x} = \log a, \] we can evaluate the limits: 1. For the first term: \[ \lim_{x \to 0} \frac{3^{2x} - 1}{2x} = \frac{1}{2} \log 3^2 = \log 3. \] 2. For the second term: \[ \lim_{x \to 0} \frac{2^{3x} - 1}{3x} = \frac{1}{3} \log 2^3 = \log 2. \] ### Step 5: Combine the results Now we can combine the results: \[ = 2 \log 3 - 3 \log 2. \] ### Step 6: Use logarithm properties Using the properties of logarithms: \[ = \log 3^2 - \log 2^3 = \log \frac{9}{8}. \] ### Final Answer Thus, the limit evaluates to: \[ \lim_{x \to 0} \frac{3^{2x} - 2^{3x}}{x} = \log \frac{9}{8}. \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(J)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(x to 0) (3^(x)-1)/x

Evaluate the following limits : Lim_(x to 0) x/(2^(x))

Evaluate the following limits : Lim_( x to 0) (3^(2x)-1)/(2^(3x)-1)

Evaluate the following limits : Lim_( x to 0) (3^(2x)-1)/(2^(3x)-1)

Evaluate the following limits : Lim_(x to 0) (sin 2x)/x

Evaluate the following limits : Lim_(x to 0) (sin^(2)x)/(2x)

Evaluate the following limits : Lim_(x to 0) (e^(x) +e^(-x)-2)/(x^(2))

Evaluate the following limits : Lim_(x to 0) (tan. 1/2x)/(3x)

Evaluate the following limits : lim_(x to 0) (sin 3x)/(sin 2x)

Evaluate the following limits : Lim_(x to 0)(sin^(2)3x)/(x^(2))