Home
Class 11
MATHS
Find the complex number z satisfying the...

Find the complex number z satisfying the equation `|(z-12)/(z-8i)|= (5)/(3), |(z-4)/(z-8)|=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \left| \frac{z - 12}{z - 8i} \right| = \frac{5}{3} \) and \( \left| \frac{z - 4}{z - 8} \right| = 1 \), we can follow these steps: ### Step 1: Define the complex number Let \( z = x + yi \), where \( x \) and \( y \) are real numbers. ### Step 2: Rewrite the first equation The first equation can be rewritten as: \[ \left| \frac{z - 12}{z - 8i} \right| = \frac{5}{3} \] This implies: \[ 3 |z - 12| = 5 |z - 8i| \] ### Step 3: Calculate the magnitudes Now, we calculate the magnitudes: - \( |z - 12| = |(x + yi) - 12| = |(x - 12) + yi| = \sqrt{(x - 12)^2 + y^2} \) - \( |z - 8i| = |(x + yi) - 8i| = |x + (y - 8)i| = \sqrt{x^2 + (y - 8)^2} \) ### Step 4: Substitute the magnitudes into the equation Substituting these into our equation gives: \[ 3 \sqrt{(x - 12)^2 + y^2} = 5 \sqrt{x^2 + (y - 8)^2} \] ### Step 5: Square both sides Squaring both sides to eliminate the square roots: \[ 9((x - 12)^2 + y^2) = 25(x^2 + (y - 8)^2) \] ### Step 6: Expand both sides Expanding both sides: \[ 9(x^2 - 24x + 144 + y^2) = 25(x^2 + y^2 - 16y + 64) \] This simplifies to: \[ 9x^2 - 216x + 1296 + 9y^2 = 25x^2 + 25y^2 - 400y + 1600 \] ### Step 7: Rearrange the equation Rearranging gives: \[ -16x^2 - 16y^2 + 216x - 400y + 304 = 0 \] Dividing through by -16: \[ x^2 + y^2 - \frac{27}{2}x + 25y - 19 = 0 \] ### Step 8: Rewrite the second equation Now, consider the second equation: \[ \left| \frac{z - 4}{z - 8} \right| = 1 \] This implies: \[ |z - 4| = |z - 8| \] ### Step 9: Calculate the magnitudes for the second equation - \( |z - 4| = |(x + yi) - 4| = |(x - 4) + yi| = \sqrt{(x - 4)^2 + y^2} \) - \( |z - 8| = |(x + yi) - 8| = |(x - 8) + yi| = \sqrt{(x - 8)^2 + y^2} \) ### Step 10: Set the magnitudes equal Setting these equal gives: \[ \sqrt{(x - 4)^2 + y^2} = \sqrt{(x - 8)^2 + y^2} \] ### Step 11: Square both sides Squaring both sides: \[ (x - 4)^2 + y^2 = (x - 8)^2 + y^2 \] ### Step 12: Simplify the equation Cancelling \( y^2 \) and simplifying: \[ (x - 4)^2 = (x - 8)^2 \] Expanding gives: \[ x^2 - 8x + 16 = x^2 - 16x + 64 \] Rearranging gives: \[ 8x - 48 = 0 \implies x = 6 \] ### Step 13: Substitute \( x \) back into the first equation Substituting \( x = 6 \) into the first equation: \[ 6^2 + y^2 - \frac{27}{2}(6) + 25y - 19 = 0 \] This simplifies to: \[ 36 + y^2 - 81 + 25y - 19 = 0 \implies y^2 + 25y - 64 = 0 \] ### Step 14: Solve for \( y \) Using the quadratic formula: \[ y = \frac{-25 \pm \sqrt{25^2 - 4 \cdot 1 \cdot (-64)}}{2 \cdot 1} \] Calculating the discriminant: \[ y = \frac{-25 \pm \sqrt{625 + 256}}{2} = \frac{-25 \pm \sqrt{881}}{2} \] ### Step 15: Find the values of \( z \) Thus, we have two possible values for \( y \): 1. \( y_1 = \frac{-25 + \sqrt{881}}{2} \) 2. \( y_2 = \frac{-25 - \sqrt{881}}{2} \) Finally, the complex numbers \( z \) are: 1. \( z_1 = 6 + \left(\frac{-25 + \sqrt{881}}{2}\right)i \) 2. \( z_2 = 6 + \left(\frac{-25 - \sqrt{881}}{2}\right)i \)
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (D)|20 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (E )|12 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (B)|69 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

Find a complex number z satisfying the equation z+sqrt(2)|z+1|+i=0.

Find a complex number z satisfying the equation z+sqrt(2)|z+1|+i=0.

Find a complex number z satisfying the equation z+sqrt(2)|z+1|+i=0.

Find the non-zero complex number z satisfying z =i z^2dot

Find the complex number z satisfying R e(z^2 =0),|z|=sqrt(3.)

Find the complex number z satisfying R e(z^2) =0,|z|=sqrt(3.)

IF agt=1 , find all complex numbers z satisfying the equation z+a|z+1|+i=0

locus of the point z satisfying the equation |z-1|+|z-i|=2 is

If z_(1) ,z_(2) be two complex numbers satisfying the equation |(z_(1)+z_(2))/(z_(1)-z_(2))|=1 , then

If z is a complex number satisfying the relation |z+ 1|=z+2(1+i) , then z is

ICSE-COMPLEX NUMBERS-Exercise (C)
  1. Find the modulus of (1-i)^(-2) + (1+ i)^(-2)

    Text Solution

    |

  2. If z= 6+8i, verify that |z|= |bar(z)|

    Text Solution

    |

  3. If z= 6+8i, verify that -|z| le " Re " (z) le |z|

    Text Solution

    |

  4. If z= 6+8i, verify that -|z| lt "Im" (z) lt |z|

    Text Solution

    |

  5. If z= 6+8i, verify that z^(-1)= (bar(z))/(|z|^(2))

    Text Solution

    |

  6. If z(1)=3 + 4i,z(2)= 8-15i, verify that |-z(1)| = |z(1)|

    Text Solution

    |

  7. If z(1)=3 + 4i,z(2)= 8-15i, verify that |z(1)^(2)| = |z(2)|^(2)

    Text Solution

    |

  8. If z(1)=3 + 4i,z(2)= 8-15i, verify that |z(1)z(2) |= |z(1)| |z(2)|

    Text Solution

    |

  9. If z(1)=3 + 4i,z(2)= 8-15i, verify that |(z(1))/(z(2))|= (|z(1)|)/(...

    Text Solution

    |

  10. If z(1)=3 + 4i,z(2)= 8-15i, verify that |z(1) + z(2)| lt |z(1)| + ...

    Text Solution

    |

  11. If z(1)=3 + 4i,z(2)= 8-15i, verify that |z(2)-z(1)| gt ||z(2)|- |z...

    Text Solution

    |

  12. If z(1)=3 + 4i,z(2)= 8-15i, verify that |z(1) + z(2)|^(2) + |z(1)-...

    Text Solution

    |

  13. Find the modulus of the following using the property of modulus (3+...

    Text Solution

    |

  14. Find the modulus of the following using the property of modulus (8+...

    Text Solution

    |

  15. Find the modulus of the following using the property of modulus (3+...

    Text Solution

    |

  16. Find the modulus of the following using the property of modulus ((2...

    Text Solution

    |

  17. Let z be a complex number such that |(z-5i)/(z+5i)|=1, then show that ...

    Text Solution

    |

  18. Find the complex number z satisfying the equation |(z-12)/(z-8i)|= (5)...

    Text Solution

    |

  19. If z is a complex number such that |z-1|= |z+1|, show that Re(z)= 0

    Text Solution

    |

  20. Solve |z|+z= 2+ i, where z is a complex number

    Text Solution

    |