Home
Class 12
MATHS
int(pi)^(2pi)|sinx|dx=?...

`int_(pi)^(2pi)|sinx|dx=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(2pi)|sinx|dx=?

Evaluate -int_(2pi)^(0)|sinx|dx

The value of int_(pi)^(2pi)[2sinx]dx is equal to (where [.] represents the greatest integer function)

int_(pi/3)^(pi/2) sinx dx

Evaluate: int_(-pi//2)^(pi//2)|sinx|dx

Evaluate : (i) int_(-pi//2)^(pi//2)|sinx|dx (ii) int_(-1)^(1)e^(|x|)dx (iii) int_(-2)^(1)|2x+1|dx .

int_(-pi//4)^(pi//4)|sinx|dx=(2-sqrt(2))

The value of int_(0)^(2pi)|cosx-sinx|dx is equal to