Home
Class 6
MATHS
Multiply 5xy^(2) xx(3x^(2) +2xy ) " by...

Multiply
`5xy^(2) xx(3x^(2) +2xy ) " by " 5xy^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of multiplying \( 5xy^2 \) by \( (3x^2 + 2xy) \) and then multiplying the result by \( 5xy^2 \), we can follow these steps: ### Step-by-Step Solution: 1. **Distribute \( 5xy^2 \) to each term in the parentheses \( (3x^2 + 2xy) \)**: \[ 5xy^2 \cdot (3x^2 + 2xy) = 5xy^2 \cdot 3x^2 + 5xy^2 \cdot 2xy \] 2. **Calculate the first term**: \[ 5xy^2 \cdot 3x^2 = 15x^{1+2}y^{2} = 15x^3y^2 \] 3. **Calculate the second term**: \[ 5xy^2 \cdot 2xy = 10x^{1+1}y^{2+1} = 10x^2y^3 \] 4. **Combine the results from the distribution**: \[ 15x^3y^2 + 10x^2y^3 \] 5. **Now multiply the entire expression by \( 5xy^2 \)**: \[ (15x^3y^2 + 10x^2y^3) \cdot 5xy^2 \] 6. **Distribute \( 5xy^2 \) to each term**: \[ 15x^3y^2 \cdot 5xy^2 + 10x^2y^3 \cdot 5xy^2 \] 7. **Calculate the first term**: \[ 15x^3y^2 \cdot 5xy^2 = 75x^{3+1}y^{2+2} = 75x^4y^4 \] 8. **Calculate the second term**: \[ 10x^2y^3 \cdot 5xy^2 = 50x^{2+1}y^{3+2} = 50x^3y^5 \] 9. **Combine the final results**: \[ 75x^4y^4 + 50x^3y^5 \] ### Final Answer: \[ 75x^4y^4 + 50x^3y^5 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Multiply : 3x^(2) y - 7xy^(2) +2xy" by " 4xy

Multiply : -2x^(2) with 3xy

Multiply : 5x^(2) - 8xy + 6y^(2) - 3 by -3xy

Multiply -5xy^(2), -3x^(2)yz and 8yz^(2) . Verify the result for x = 1, y = 2 and z = 3.

Multiply : -6x^(2) "with " -2xy

Evaluate : 3x^(2) + 5xy - 4y^(2) + x^(2) - 8xy - 5y^(2)

Add the following expressions using horizontal method : -x^(2)y + xy^(2) + 2xy , 3x^(2) y + 4xy^(2) + 5xy and 7x^(2)y - 10xy^(2) - xy

Simplify the following : 3xy^(2) - 5x^(2)y + 7xy - 9xy^(2) - 4xy + 6x^(2)y

Simplify the following : 2x^(2) + 3y^(2) - 5xy +5x^(2) - y^(2) + 6xy - 3x^(2)

Add : x^(3) - x^(2)y + 5xy^(2) + y^(3) , -x^(3) - 9xy^(2) + y^(3), 3x^(2)y + 9xy^(2)