Home
Class 12
MATHS
The value of lamda for which the four po...

The value of `lamda` for which the four points `2hati+3hatj-hatk,hati+2hatj+3hatk,3hati+4hatj-2hatk` and `hati-lamdahatj+6hatk` are coplanar.

A

8

B

0

C

`-2`

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of `lambda` for which the four points \( P_1(2\hat{i} + 3\hat{j} - \hat{k}) \), \( P_2(\hat{i} + 2\hat{j} + 3\hat{k}) \), \( P_3(3\hat{i} + 4\hat{j} - 2\hat{k}) \), and \( P_4(\hat{i} - \lambda \hat{j} + 6\hat{k}) \) are coplanar, we can follow these steps: ### Step 1: Define the position vectors Let: - \( \vec{A} = 2\hat{i} + 3\hat{j} - \hat{k} \) - \( \vec{B} = \hat{i} + 2\hat{j} + 3\hat{k} \) - \( \vec{C} = 3\hat{i} + 4\hat{j} - 2\hat{k} \) - \( \vec{D} = \hat{i} - \lambda \hat{j} + 6\hat{k} \) ### Step 2: Find the vectors \( \vec{AB} \), \( \vec{AC} \), and \( \vec{AD} \) - \( \vec{AB} = \vec{B} - \vec{A} = (\hat{i} + 2\hat{j} + 3\hat{k}) - (2\hat{i} + 3\hat{j} - \hat{k}) = -\hat{i} - \hat{j} + 4\hat{k} \) - \( \vec{AC} = \vec{C} - \vec{A} = (3\hat{i} + 4\hat{j} - 2\hat{k}) - (2\hat{i} + 3\hat{j} - \hat{k}) = \hat{i} + \hat{j} - k \) - \( \vec{AD} = \vec{D} - \vec{A} = (\hat{i} - \lambda \hat{j} + 6\hat{k}) - (2\hat{i} + 3\hat{j} - \hat{k}) = -\hat{i} - (\lambda + 3)\hat{j} + 7\hat{k} \) ### Step 3: Set up the determinant for coplanarity The points are coplanar if the determinant of the matrix formed by the vectors \( \vec{AB} \), \( \vec{AC} \), and \( \vec{AD} \) is equal to zero: \[ \begin{vmatrix} -1 & -1 & 4 \\ 1 & 1 & -1 \\ -1 & -(\lambda + 3) & 7 \end{vmatrix} = 0 \] ### Step 4: Calculate the determinant Calculating the determinant: \[ D = -1 \begin{vmatrix} 1 & -1 \\ -(\lambda + 3) & 7 \end{vmatrix} + 1 \begin{vmatrix} -1 & 4 \\ -1 & 7 \end{vmatrix} + 4 \begin{vmatrix} -1 & -1 \\ -1 & -(\lambda + 3) \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 1 & -1 \\ -(\lambda + 3) & 7 \end{vmatrix} = 1 \cdot 7 - (-1)(-\lambda - 3) = 7 - \lambda - 3 = 4 - \lambda \) 2. \( \begin{vmatrix} -1 & 4 \\ -1 & 7 \end{vmatrix} = (-1)(7) - (4)(-1) = -7 + 4 = -3 \) 3. \( \begin{vmatrix} -1 & -1 \\ -1 & -(\lambda + 3) \end{vmatrix} = (-1)(-\lambda - 3) - (-1)(-1) = \lambda + 3 - 1 = \lambda + 2 \) Putting it all together: \[ D = -1(4 - \lambda) + 1(-3) + 4(\lambda + 2) \] \[ = -4 + \lambda - 3 + 4\lambda + 8 \] \[ = 5\lambda + 1 \] ### Step 5: Set the determinant to zero Setting the determinant equal to zero for coplanarity: \[ 5\lambda + 1 = 0 \] ### Step 6: Solve for \( \lambda \) \[ 5\lambda = -1 \implies \lambda = -\frac{1}{5} \] ### Final Answer Thus, the value of \( \lambda \) for which the four points are coplanar is: \[ \lambda = -\frac{1}{5} \]

To find the value of `lambda` for which the four points \( P_1(2\hat{i} + 3\hat{j} - \hat{k}) \), \( P_2(\hat{i} + 2\hat{j} + 3\hat{k}) \), \( P_3(3\hat{i} + 4\hat{j} - 2\hat{k}) \), and \( P_4(\hat{i} - \lambda \hat{j} + 6\hat{k}) \) are coplanar, we can follow these steps: ### Step 1: Define the position vectors Let: - \( \vec{A} = 2\hat{i} + 3\hat{j} - \hat{k} \) - \( \vec{B} = \hat{i} + 2\hat{j} + 3\hat{k} \) - \( \vec{C} = 3\hat{i} + 4\hat{j} - 2\hat{k} \) - \( \vec{D} = \hat{i} - \lambda \hat{j} + 6\hat{k} \) ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Find the value of lambda for which the four points with position vectors 6hati-7hatj, 16hati-19hatj, lambdahatj-6hatk and 2hati-5hatj+10hatk are coplanar.

If the figure formed by the four points hati+hatj-hatk,2hati+3hatj,3hati+5hatj-2hatk and hatk-hatj is

Show that the vectors hati-hatj-hatk,2hati+3hatj+hatk and 7hati+3hatj-4hatk are coplanar.

The number of distinct values of lamda , for which the vectors -lamda^(2)hati+hatj+hatk, hati-lamda^(2)hatj+hatk and hati+hatj-lamda^(2)hatk are coplanar, is

The number of distinct real values of lamda , for which the vectors -lamda^(2)hati+hatj+hatk, hati-lamda^(2)hatj+hatk and hati+hatj-lamda^(2)hatk are coplanar, is

Prove that four points position vectors 6hati-7hatj,16hati-19 hatj-4hatk,3hatj-6hatk and 2hati + 5hatj+ 10hatk are not coplanar.

Find lambda if the vectors hati\ -\ hatj\ +\ hatk,\ 3 hati+\ hatj\ +\ 2 hatk\ and\ hati+lambda hatj+ hat3k\ are coplanar

The points with position vectors alpha hati+hatj+hatk, hati-hatj-hatk, hati+2hatj-hatk, hati+hatj+betahatk are coplanar if

Show that the vectors 2hati-3hatj+4hatk and -4hati+6hatj-8hatk are collinear.

If the four points with position vectors -2hati+hatj+hatk, hati+hatj+hatk, hatj-hatk and lamda hatj+hatk are coplanar then lamda= (A) 1 (B) 2/3 (C) -1 (D) 0