Home
Class 12
MATHS
Find the arithmetic progression consisti...

Find the arithmetic progression consisting of 10 terms , if sum of the terms occupying the even places is equal to 15 and the sum of those occupying the odd places is equal to `25/2`

Text Solution

AI Generated Solution

To find the arithmetic progression (AP) consisting of 10 terms where the sum of the terms occupying the even places is equal to 15 and the sum of those occupying the odd places is equal to \( \frac{25}{2} \), we can follow these steps: ### Step 1: Define the terms of the AP Let the first term be \( a \) and the common difference be \( d \). The 10 terms of the AP can be represented as: - \( A_1 = a \) - \( A_2 = a + d \) - \( A_3 = a + 2d \) - \( A_4 = a + 3d \) ...
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|11 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

A G.P. consists of 2n terms. If the sum of the terms occupying the odd places is S_(1) , and that of the terms in the even places is S_(2) , then S_(2)/S_(1) , is

A G.P. consist of 2n terms. If the sum of the terms occupying the odd places is S, and that of the terms occupying the even places is S_(2) then find the common ratio of the progression.

In a geometric progression consisting of positive terms, each term equals the sum of the next terms. Then find the common ratio.

In an arithmetical progression, the sum of p terms is m and the sum of q terms is also m. Find the sum of (p + q) terms.

A geometrical progression of positive terms and an arithmetical progression have the same first term. The sum of their first terms is 1 , the sum of their second terms is (1)/(2) and the sum of their third terms is 2. Calculate the sum of their fourth terms.

A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.

A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.

A. G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying he odd places. Find the common ratio of the G.P.

Two arithmetic progressions have the same numbers. The reatio of the last term of the first progression to the first term of the second progression is equal to the ratio of the last term of the second progression to the first term of first progression is equal to 4. The ratio of the sum of the n terms of the first progression to the sum of the n terms of teh first progression to the sum of the n terms of the second progerssion is equal to 2. The ratio of their first term is

Two arithmetic progressions have the same numbers. The reatio of the last term of the first progression to the first term of the second progression is equal to the ratio of the last term of the second progression to the first term of first progression is equal to 4. The ratio of the sum of the n terms of the first progression to the sum of the n terms of teh first progression to the sum of the n terms of the second progerssion is equal to 2.

ARIHANT MATHS ENGLISH-SEQUENCES AND SERIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Find the arithmetic progression consisting of 10 terms , if sum of the...

    Text Solution

    |

  2. Let a,b,c be in A.P. and |a|lt1,|b|lt1|c|lt1.ifx=1+a+a^(2)+ . . . ."to...

    Text Solution

    |

  3. about to only mathematics

    Text Solution

    |

  4. If a1, a2, a3, be terms of an A.P. and (a1+a2+.....+ap)/(a1+a2+.....+...

    Text Solution

    |

  5. If a1, a2, a3,.....an are in H.P. and a1 a2+a2 a3+a3 a4+.......a(n-1...

    Text Solution

    |

  6. Let V(r ) denotes the sum of the first r terms of an arithmetic progre...

    Text Solution

    |

  7. Let Vr denote the sum of the first r terms of an arithmetic progressio...

    Text Solution

    |

  8. Let V(r) denote the sum of the first r terms of an arithmetic progress...

    Text Solution

    |

  9. LetA(1),G(1),H(1) denote the arithmetic, geometric and harmonic means ...

    Text Solution

    |

  10. Let A1 , G1, H1denote the arithmetic, geometric and harmonic means re...

    Text Solution

    |

  11. LetA(1),G(1),H(1) denote the arithmetic, geometric and harmonic means ...

    Text Solution

    |

  12. In a G.P of positive terms if any term is equal to the sum of the next...

    Text Solution

    |

  13. Suppose four distinct positive numbers a(1),a(2),a(3),a(4) are in G.P....

    Text Solution

    |

  14. The first two terms of a geometric progression add up to 12. The sum o...

    Text Solution

    |

  15. If the sum of first n terms of an A.P. is cn^(2) then the sum of squar...

    Text Solution

    |

  16. The sum to infinity of the series 1+2/3+6/3^2+14/3^4+...is

    Text Solution

    |

  17. Let Sk,k=1, 2, …. 100 denote the sum of the infinite geometric series ...

    Text Solution

    |

  18. Let a1, a2, a3, ,a(11) be real numbers satisfying a1=15 , 27-2a2>0 a ...

    Text Solution

    |

  19. A person is to count 4500 currency notes. Let an denote the number of ...

    Text Solution

    |

  20. The minimum value of the sum of real numbers a^-5, a^-4, 3a^-3, 1,a^8 ...

    Text Solution

    |

  21. A man saves ₹ 200 in each of the first three months of his servies.In ...

    Text Solution

    |