Home
Class 12
MATHS
If f(theta)=|{:(1,tantheta,1),(-tantheta...

If `f(theta)=|{:(1,tantheta,1),(-tantheta,1,tantheta),(-1,-tantheta,1):}|` then the set `{f(theta):0lt=thetalt(pi)/(2)}` is

A

`(-oo,-1)cup(1,oo)`

B

`[2,oo)`

C

`(-oo,0]cup[2,oo)`

D

`(-oo,-1]cup[1,oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given by the function \( f(\theta) \) and find its range as \( \theta \) varies from \( 0 \) to \( \frac{\pi}{2} \). ### Step-by-Step Solution: 1. **Write the Determinant**: The function is defined as: \[ f(\theta) = \left| \begin{array}{ccc} 1 & \tan \theta & 1 \\ -\tan \theta & 1 & \tan \theta \\ -1 & -\tan \theta & 1 \end{array} \right| \] 2. **Expand the Determinant**: We will expand this determinant using the first row: \[ f(\theta) = 1 \cdot \left| \begin{array}{cc} 1 & \tan \theta \\ -\tan \theta & 1 \end{array} \right| - \tan \theta \cdot \left| \begin{array}{cc} -\tan \theta & \tan \theta \\ -1 & 1 \end{array} \right| + 1 \cdot \left| \begin{array}{cc} -\tan \theta & 1 \\ -1 & -\tan \theta \end{array} \right| \] 3. **Calculate Each Minor**: - The first minor: \[ \left| \begin{array}{cc} 1 & \tan \theta \\ -\tan \theta & 1 \end{array} \right| = 1 \cdot 1 - (-\tan \theta) \cdot \tan \theta = 1 + \tan^2 \theta \] - The second minor: \[ \left| \begin{array}{cc} -\tan \theta & \tan \theta \\ -1 & 1 \end{array} \right| = (-\tan \theta) \cdot 1 - \tan \theta \cdot (-1) = -\tan \theta + \tan \theta = 0 \] - The third minor: \[ \left| \begin{array}{cc} -\tan \theta & 1 \\ -1 & -\tan \theta \end{array} \right| = (-\tan \theta)(-\tan \theta) - 1(-1) = \tan^2 \theta + 1 \] 4. **Combine the Results**: Putting it all together: \[ f(\theta) = 1(1 + \tan^2 \theta) - \tan \theta(0) + 1(\tan^2 \theta + 1) = (1 + \tan^2 \theta) + (\tan^2 \theta + 1) \] \[ = 2 + 2\tan^2 \theta \] 5. **Express in Terms of Secant**: We know that \( 1 + \tan^2 \theta = \sec^2 \theta \), so: \[ f(\theta) = 2(1 + \tan^2 \theta) = 2\sec^2 \theta \] 6. **Determine the Range**: As \( \theta \) varies from \( 0 \) to \( \frac{\pi}{2} \): - At \( \theta = 0 \), \( \sec(0) = 1 \) so \( f(0) = 2 \cdot 1^2 = 2 \). - As \( \theta \) approaches \( \frac{\pi}{2} \), \( \sec(\theta) \) approaches infinity. Therefore, the range of \( f(\theta) \) is: \[ [2, \infty) \] ### Final Answer: The set \( \{ f(\theta) : 0 \leq \theta < \frac{\pi}{2} \} \) is \( [2, \infty) \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Determinants Exercise 7:|3 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

If f:[0,pi/2)->R is defined as f(theta)=|(1,tantheta,1),(-tantheta,1,tantheta),(-1,-tantheta,1)| Then, the range of f is

Prove that (1+sin2theta)/(1-sin2theta)=((1+tantheta)/(1-tantheta))^2

If f(x)=|{:(sectheta," "tan^(2)theta,1),(thetasecx," "tanx,x),(" "1,tanx-tantheta,0):}| , then f'(theta) is

(tantheta+2)(2 tantheta+1) = 5 tantheta+ sec^(2)theta

Evaluate: int(tantheta+tan^3theta)/(1+tan^3theta)d theta

Prove (tantheta+2)(2tantheta+1)=5tantheta+2sec^2theta.

Prove that (1+sin2theta)/(1-sin2theta)=((1+tantheta)/(1-tan theta))^(2)

Solve the equation: tantheta+tan2theta+tanthetatan2theta=1

Prove that: (tantheta)/(1-cottheta)+(cottheta)/(1-tantheta)=1+secthetacos e ctheta

(cottheta)/(cottheta-cot3theta) + tantheta/(tantheta-tan3theta) is equal to

ARIHANT MATHS ENGLISH-DETERMINANTS -Exercise (Questions Asked In Previous 13 Years Exam)
  1. If a^2+b^2+c^2=-2a n df(x)= |1+a^2x(1+b^2)x(1+c^2)x(1+a^2)x1+b^2x(1+c...

    Text Solution

    |

  2. The value of |alpha| for which the system of equation alphax+y+z=alpha...

    Text Solution

    |

  3. if a(1),a(2),…….a(n),……. form a G.P. and a(1) gt 0 , for all I ge 1 ...

    Text Solution

    |

  4. If D =|{:(1,1,1),(1,1+x,1),(1,1,1+y):}|"for" " "xne0,yne0 then D is

    Text Solution

    |

  5. Consider the system of equations x-2y+3z=-1 -x+y-2z=k x-3y+4z=1 ...

    Text Solution

    |

  6. Let a,b,c, be any real number. Suppose that there are real numbers x,y...

    Text Solution

    |

  7. Let a,b,c be such that b(a+c)ne 0. If |{:(,a,a+1,a-1),(,-b,b+1,b-1),(,...

    Text Solution

    |

  8. If f(theta)=|{:(1,tantheta,1),(-tantheta,1,tantheta),(-1,-tantheta,1):...

    Text Solution

    |

  9. The number of values of k for which the linear equations 4x+ky+2...

    Text Solution

    |

  10. If the trivial solution is the only solution of the system of equation...

    Text Solution

    |

  11. The number of values of k, for which the system of equations (k""+"...

    Text Solution

    |

  12. if alpha, beta , ne 0 " and " f(n) =alpha^(n)+beta^(n) " and " |{:(...

    Text Solution

    |

  13. The set of all values of lambda for which the system of linear equ...

    Text Solution

    |

  14. Which of the following values of alpha satisfying the equation |(1+alp...

    Text Solution

    |

  15. The system of linear equations x+lambday-z=0, lambdax-y-z=0, x+y-lam...

    Text Solution

    |

  16. The total number of distinct x in R for which |{:(x,,x^(2),,...

    Text Solution

    |

  17. Let alpha, lambda , mu in R.Consider the system of linear equations ...

    Text Solution

    |

  18. If S is the set of distinct values of 'b' for which the following ...

    Text Solution

    |