Home
Class 12
MATHS
If f(x) is continuous such that abs(f(x)...

If f(x) is continuous such that `abs(f(x)) le 1, forall x in R " and " g(x)=(e^(f(x))-e^(-abs(f(x))))/(e^(f(x))+e^(-abs(f(x)))),` then range of g(x) is

A

[0,1]

B

`[0,(e^(2)-1)/(e^(2)+1)]`

C

`[0,(e^(2)+1)/(e^(2)-1)]`

D

`[(1-e^(2))/(1+e^(2)),0]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( g(x) \) given the constraints on \( f(x) \). ### Step-by-Step Solution: 1. **Understanding the function \( g(x) \)**: The function is defined as: \[ g(x) = \frac{e^{f(x)} - e^{-\lvert f(x) \rvert}}{e^{f(x)} + e^{-\lvert f(x) \rvert}} \] Given that \( \lvert f(x) \rvert \leq 1 \), we know that \( f(x) \) can take values in the interval \([-1, 1]\). 2. **Case Analysis**: We will analyze two cases based on the sign of \( f(x) \): - Case 1: \( f(x) \geq 0 \) - Case 2: \( f(x) < 0 \) 3. **Case 1: \( f(x) \geq 0 \)**: Here, \( \lvert f(x) \rvert = f(x) \). Thus, we can rewrite \( g(x) \): \[ g(x) = \frac{e^{f(x)} - e^{ - f(x)}}{e^{f(x)} + e^{-f(x)}} \] This can be simplified using the identity for hyperbolic tangent: \[ g(x) = \tanh(f(x)) \] Since \( f(x) \) varies from \( 0 \) to \( 1 \), we find the range of \( g(x) \): - At \( f(x) = 0 \): \( g(0) = \tanh(0) = 0 \) - At \( f(x) = 1 \): \( g(1) = \tanh(1) \) The value of \( \tanh(1) \) can be calculated: \[ \tanh(1) = \frac{e^1 - e^{-1}}{e^1 + e^{-1}} = \frac{e - \frac{1}{e}}{e + \frac{1}{e}} = \frac{e^2 - 1}{e^2 + 1} \] 4. **Case 2: \( f(x) < 0 \)**: In this case, \( \lvert f(x) \rvert = -f(x) \). Thus, we can rewrite \( g(x) \): \[ g(x) = \frac{e^{f(x)} - e^{f(x)}}{e^{f(x)} + e^{-f(x)}} = 0 \] This means that for any negative value of \( f(x) \), \( g(x) \) will always equal \( 0 \). 5. **Combining Results**: From both cases, we find: - When \( f(x) \geq 0 \), \( g(x) \) ranges from \( 0 \) to \( \frac{e^2 - 1}{e^2 + 1} \). - When \( f(x) < 0 \), \( g(x) = 0 \). Therefore, the overall range of \( g(x) \) is: \[ [0, \frac{e^2 - 1}{e^2 + 1}] \] ### Final Answer: The range of \( g(x) \) is: \[ [0, \frac{e^2 - 1}{e^2 + 1}] \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|22 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 12|4 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

If e ^(x)+e^(f(x))=e, then for f (x) domain is:

If f(x) =e^(-x) , then f'(x) is ?

if e^x+e^(f(x))=e then for f(x)

If f(x)=(log)_e((x^2+e)/(x^2+1)) , then the range of f(x)

f: R->R is defined by f(x)=(e^(x^2)-e^(-x^2))/(e^(x^2)+e^(-x^2)) is :

If f(x)=x.e^(x(1-x), then f(x) is

I=int_(0)^(2)(e^(f(x)))/(e^(f(x))+e^(f(2-x)))dx is equal to

f(x)=abs(x-1)+abs(x-2)+abs(x-3) . Find the range of f(x).

Let f be the continuous and differentiable function such that f(x)=f(2-x), forall x in R and g(x)=f(1+x), then

f(x)=e^x-e^(-x) then find f'(x)

ARIHANT MATHS ENGLISH-FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. Let f: X -> Y be an invertible function. Show that the inverse of f^(...

    Text Solution

    |

  2. The range of values of a so that all the roots of the equations 2x^(3)...

    Text Solution

    |

  3. If f(x) is continuous such that abs(f(x)) le 1, forall x in R " and " ...

    Text Solution

    |

  4. Let f(x)=sqrt(|x|-|x+)(w h e r e{dot} denotes the fractional part of (...

    Text Solution

    |

  5. If the graphs of the functionsy= log (e)x and y = ax intersect at exac...

    Text Solution

    |

  6. A quadratic polynomial maps from [-2,3] onto [0,3] and touches X-axis ...

    Text Solution

    |

  7. The range of the function y=sqrt(2{x}-{x}^2-3/4) (where, denotes the f...

    Text Solution

    |

  8. Let f(x) be a fourth differentiable function such f(2x^2-1)=2xf(x)AA x...

    Text Solution

    |

  9. Number of solutions of the equation, [y+[y]]=2cosx is: (where y=1//3)[...

    Text Solution

    |

  10. If a function satisfies f(x+1)+f(x-1)=sqrt(2)f(x), then period of f(x)...

    Text Solution

    |

  11. If x and alpha are real, then the inequation log(2)x+log(x)2+2cos al...

    Text Solution

    |

  12. The range of values of ‘a' such that (1/2)^|x|= x² - a is satisfied f...

    Text Solution

    |

  13. Let f:R rarr R be a function defined by f(x)={abs(cosx)}, where {x} re...

    Text Solution

    |

  14. The domain of the function f(x)=sqrt(log(sinx+cosx)(abs(cosx)+cosx))...

    Text Solution

    |

  15. If f(x)=(x^(2)+2alphax+alpha^(2)-1)^(1//4) has its domain and range su...

    Text Solution

    |

  16. If f: (e,oo) rarr R & f(x)=log[log (logx)], then f is - (a)f is one-...

    Text Solution

    |

  17. The expression x^2-4px+q^2> 0 for all real x and also r^2+ p^2 < qr t...

    Text Solution

    |

  18. Let f(x)=(x^(4)-lambdax^(3)-3x^(2)+3lambdax)/(x-lambda). If range of f...

    Text Solution

    |

  19. Let a=3^(1//224)+1 and for all n ge 3, let f(n)=""^(n)C(0)a^(n-1)-""...

    Text Solution

    |

  20. The area bounded by f(x)=sin^(-1)(sinx) and g(x)=pi/2-sqrt(pi^(2)/2-...

    Text Solution

    |